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Abstract 
The smart power grids will extensively rely on 

network control to increase efficiency, reliability, and 
safety. In this context, the simulation of such complex 
systems is becoming an essential tool to support the 
development of Smart Grids. 

This paper presents an overview of the EDF R&D 
Modelica library GridSysPro (GSP), which provides 
electrical components adapted to Smart Grid simulation; 
and a multi-agent approach for supporting the co-
initialization process of complex network of FMUs. 

Keywords:     Smart Grid, Co-Simulation, Modelica.  

 

Introduction 
The smart power grids will extensively rely on 

network control to increase efficiency, reliability, and 
safety; to enable plug-and-play asset integration, such as 
in the case of distributed generation and alternative 
energy sources; to support market dynamics as well as 
reduce peak prices and stabilize costs when supply is 
limited. In turn, network control requires an advanced 
communication infrastructure with support for safety 
and real-time communication (Figure 1). 

Simulating such complex systems is required for the 
development of Smart Grids. Several simulation tools 
are available on the market but these tools have two 
major drawbacks: 

• They are generally not designed to import 
models developed for other tools. 

• They are not adapted to large scale complex 
system of systems or cyber-physical systems 
as smart grids which require time-
consuming calculation. 

One solution to bypass these drawbacks is to use a co-
simulation platform which can connect together several 
simulators and FMUs (Functional Mock-up unit). 

 

EDF R&D is funding the development of its own co-
simulation platform dedicated to the Smart Grids in 
partnership with LORIA-INRIA. A first release of this 
tool named MECSYCO is available under the Affero  

 
 

GPL license v3 (http://mecsyco.loria.fr/). The next 
published version (at the end of 2015) will upgrade 
MECSYCO with the coupling of different types of 
discrete-time or continuous-time simulators (including 
the FMUs) divided in three domains: 

• The physics domain (process) : FMUs 
exported according to the FMI 2.0 standard 
from Dymola with models built from the EDF 
Modelica library GridSysPro or historical tools 
widely used at EDF (e.g. EMTP-RV) now 
compatible with the FMI standard;  

• The telecommunication domain: NS-3, 
OMNeT++ or OPNeT ; 

• The Information System domain with 
models designed with UML/SysML oriented 
tools. 

 
 
MECSYCO is based on the Multi-Agent concept (one 
agent per simulator to describe a heterogeneous multi-
model) and on the DEVS formalism (to conceive a 
decentralized execution algorithm respecting the 
causality constraints). 
 

This paper provides first an overview of the EDF 
R&D Modelica library GridSysPro (GSP) composed of 
electrical components mapped on the zone related to the 
process of a Smart Grid (Figure 1). Besides that, to 
comply with the modeling of large scale electrical 
networks, a solution to co-initialize several 
interconnected FMUs exported from Dymola is 
described. 
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Figure 1 : The Smart Grid Architecture Model (SGAM)  

1 GridSysPro Library  

Modeling of electrical networks has always been a 
major scientific challenge for analysis and design. 

Models are often used for studies of stability and 
control, for the analysis and optimization of power flow 
or for harmonic analysis and their distortion.  

The common approach in electrical network 
simulation is based on classification of the phenomena 
according to their time scales (Figure 2). For each class 
of phenomena, particular mathematical models are 
developed (Figure 3).  

 

Figure 2 : Power system dynamics 

 
Figure 3 : Model representations for different time scales 

1.1 Objectives of GSP  

GridSysPro (GSP) is a Modelica library which allows 
stationary power load flow calculation, short circuit 
analyses and transient stability simulations. 

The goal of stationary power load flow analysis is 
to find all branch currents and all nodal voltages 
amplitude and their angles according to electrical 
constraints applied at each injection node. It can help to 
calculate the use of power system resources and the 
power quality with respect to the voltage bandwidth 
constraints. In the real world, such analysis may be done 
for anticipating the effects of future operation decisions. 
In the simulated Smart Grid, the power flow analysis is 
a vital function to get the line currents and node voltages 
in the real power system. With this information, 
compliance to operating limitations such as those 
stipulated by voltage ranges and maximum loads, can be 
examined. In this way, the location of congestions and 
power outage situations can be identified. Moreover, the 
stationary power flow analysis is required to help the 
self-healing function, after the isolation step of the 
faulted section, to re-establish service to as many 
customers as possible from alternative sources/feeders 
in accordance with the operating limitations. Due to the 
ability to determine losses and reactive-power 
allocation, load-flow calculation also supports the 
planning engineer in the investigation of the most 
economical operation mode of the network. 

Short circuit analysis recalculates the power flow 
after the occurrence of a fault in a power network. The 
faults may be a three-phase short circuit, a one-phase 
grounded, a two-phase short circuit, a two-phase 
grounded, a one-phase break, a two-phase break or a 
more complex fault. 

The goal of transient stability simulation of power 

systems is to analyze the stability of a power system in 
a time window of a few seconds to several tens of 
seconds. Stability in this aspect is the ability of the 
system to quickly return to a stable operating condition 
after being exposed to a disturbance such as for example 
a tree falling over an overhead line resulting in the 
automatic disconnection of that line by its protection 
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systems. In engineering terms, a power system is 
deemed stable if the rotational speeds of motors and 
generators, and substation voltage levels can return to 
their normal values in a quick and stable manner. 

1.2 Overview of the GridSysPro library 

According to the objective retained, GSP allows the 
modeling of both transmission (HV) and distribution 
(MV/LV) electrical networks. The first version of GSP 
provides the following components: 

• lines, 
• transformer with or without load tap changer 

and different winding coupling, 
• generators, 
• adapted blocks in order to build different types 

of controllers like voltage and speed regulators, 
• generic load which can represent different types 

of consumption according to sensitive factor as 
parameters related to voltage and frequency, 

• electrical faults, analysers and breakers. 

 
 

Figure 4 : Packages of GSP 

Data and an Icon, which correspond respectively to 
external parameters and a graphical representation, are 
inherited by each main electrical component.  

Component models are stored in hierarchically 
structured packages. The blue ones provide all 
elementary functions and models required to describe 
the main components (green) needed for network 
modeling.  
 

1.3 Principles retained for the development of 

GSP  

Because of electromagnetic transients are not 
considered in the GSP development (Figure 2 and 
Figure 3), power systems are described in a form using 
system of algebraic-differential equations. Thus the 
behavior of each passive component of the grid is 
defined by algebraic equations (complex number 
formulations) while the one related to electrical and 
mechanical parts of machines are determined by a 
system of differential equations.  

 
In order to simulate large-scale three phases balanced 

and unbalanced networks, passive components have 
been defined by three single phase Quadruples Y(QY).  
 

 
Figure 5 : model of a passive component 

The algebraic equation of a QY is defined according to 
the equation (1) where only the variables of the positive 
and negative pins (p, n) are considered. 
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Thus GSP passive components are described by three 
generic QY objects connected to two composite 
connectors containing three pins. The latter are related 
respectively to the positive, negative and zero sequence 
circuits. More precisely, the three phases a, b and c of 
each passive component are broken down into three sets 
of balanced  single-phase phasors 1, 2 and 0 according 
to the transformation of Fortescue (2).  
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Therefore, the components of a grid, as lines, cables 
and transformers are represented by three decoupling 
circuits (Figure 5). Thus, the behavior of each object 
differs only by the definition of the y-parameter matrix 
( 1Y , 2Y , 0Y ) of each QY model. Besides that an 
analyzer VIPQ can be used in order to provide voltage, 
current and power flow per phase (a, b, c).  

 
During the initialization which is equivalent to a load 

flow calculation: 
• generators are represented as either PQ or 

PV node as slack node depending on the 
attribute:  LoadFlow_type. For each 
dynamic state variable on which derivative 
is applied one equation is given in the initial 
equation section,  

• loads are defined as constraint of 
consumption. 

1.4 Illustrations and validations 

Some validations of GSP have been done where load 
flow and dynamic behaviors have been tested and 
compared respectively with OpenDSS and ObjectStab.  

The OpenDSS is an electrical power system 
simulation tool developed by EPRI (USA Electric 
Power Research Institute) primarily for electric utility 
power distribution systems. It supports nearly all 
frequency domain (sinusoidal steady‐state) analyses 
commonly performed on electric utility power 
distribution systems.  

The ObjectStab package is a free Modelica Library 
for power systems voltage and transient stability 
simulations limited to single phase description of 
Network and dedicated to students. For GSP validation 
the use case of ObjectStab validated with EUROSTAG 
(common tool used by utilities for transient stability 
simulations) has been retained.  

All these tests have been successful and the one 
related to the load flow simulation is presented here 
after.  

The considered MV Network is a typical outgoing 
feeder of EDF energized by its MV primary substation 
(Figure 6). In order to simplify the description of 
networks a Network Management Tool developed by 
EDF R&D under MATLAB has been used. This NMT 
allows an automatic generation of the Modelica model 
of a network from the CIM XML file. More precisely 
the IEC 61970/61968 (CIM) provides a Common 
Information Model to support the information exchange 
between different EMS (Energy Management System). 
Its large data model provides the possibility to model 
physical (like cables, switches) and abstract objects (like 
documents, schedules, and consumer data) in the energy 
domain. The databases of EDF’s electrical networks 
have been built according to the CIM standard. 
Therefore NMT and Dymola/GridSysPro allow an 
automatic Modelica implementation of EDF grids. 

 

 
Figure 6 :  the outgoing MV feeder retained for the 

GSP test 

The Load flow simulations results are provided in 
Figure 7. These latter correspond to the voltage 
amplitude profile along the considered MV network 
from the primary substation to the end points of the grid. 

The results obtained respectively by OpenDSS and 
GridSysPro are identical.  

 

 
Figure 7 : The voltage amplitude profile obtained with 

OpenDSS and GSP 

2 Co-initialization with FMUs exported 

from GSP 

One solution to comply with the simulation of very 
large scale electrical networks described from GSP is to 
export the latter as several FMUs to be interconnected 
and simulated inside a co-simulation platform like 
MECSYCO. The segmentation of electrical networks 
into a set of FMUs is a design choice that depends on 
models and solvers properties (their execution cost…). 

However, in this case the load flow calculation is 
distributed into each FMU and a master has to be 
developed in order to coordinate the calculation of each 
boundary variables related to input and output of each 
FMU. 

2.1 Co-initialization with an Adaptive 

MultiAgent System (AMAS) 

A graph of connected FMUs can be expressed in 
general way as following ��������������� 	 〈��〉����������. Each 
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FMU can be viewed as a function owning inputs and 
providing outputs. FMUs are connected through some 
of their inputs assigned to outputs of other FMUs, 
defining the calculation graph of the global problem. In 
this view, the vectors ����������. and  ��������������� represent all 
inputs and outputs of all FMU, while 〈��〉 is the 
aggregation of all FMU functions on which the input 
vector ���������� is applied. Trying to co-initialize multiple 
FMU is equivalent to verifying the following property: 
��������������� 	 〈��〉���������� 	 ����������. 

Thus, the co-initialization problem is in its general 
formulation equivalent to the search of fixed points in 
mathematics. Indeed, given a set E and an application 
�:� → �, a point x is a fixed point if ���� 	 �. E can 
be a metric space in n dimensions. When the FMUs 
graph owns many cycles, the problem of co-
initialization corresponds to a complex fixed point 
search problem.  

In this paper, we propose to explore the potentialities 
of a multi-agent approach for solving this type of fixed 
point search problem. For this, we choose to apply the 
AMAS (Adaptive Multi-Agent Systems) theory 
developed by SMAC team in (Georgé, Gleizes, & 
Camps, 2011).  This theory has shown its suitability for 
solving complex and dynamic problems in many 
applications (Jorquera, Georgé, Gleizes, & Régis, 
2013), (Brax, Andonoff, Gleizes, & Glize, 2013), 
(Capera, Gleizes, & Glize, Mechanism Type Synthesis 
based on Self-Assembling Agents, 2004). 

In this section, we will very briefly present some 
important concepts of Multi-Agent Systems and the 
AMAS theory. The AMAS theory will then be used as 
a guide in the design of a multi-agent system able to 
solve the fixed point search problem presented above. 
Finally, we will present some results of the application 
of this multi-agent system on a GSP generated case 
study. 

2.2 Multi-Agent Systems 

A multi-agent system is a set of autonomous entities 
called agents, interacting in a common environment, 
acting to solve in coherent way a common task. This last 
point is important because it implies the unity of the 
MAS. Even if each agent has its own individual goal, in 
some situations their goal can possibly be in conflict 
with the others.  

According to  (Wooldridge & Jennings, 1995) and  
(Ferber, 1999) , an agent is a physical or a software 
entity which:  

• is autonomous,  
• exists in an environment that it can perceive and on 

which it can act,  
• has a partial representation of this environment,  
• is able to communicate with other agents,  
• has resources,  

• has skills and can offer services.  
The behavior of an agent results from its 

perceptions, its knowledge, its skills, and naturally its 
goals. It follows a life cycle in three stages repeated 
infinitely throughout its execution: 

• the stage of perception during which the agent 
acquires new information on the environment,  

• the stage of decision in the course of which the agent 
chooses the next actions to be made,  

• the stage of action during which the agent performs 
the actions chosen in the previous stage.  
An essential characteristic of agents is their 

autonomy: they decide themselves to act or not and the 
nature of their actions. 

2.3 Adaptive Multi-Agent System Theory 

The Adaptive Multi-Agent System (AMAS) theory 
appears suitable for the fixed point search problem (see 
(Capera, Georgé, Gleizes, & Glize, 2003) (Whitehead, 
2008)).  

Due to their distributed structure, AMAS are flexible 
and self-adaptable to several strategies of simulators 
control. The first aim of the AMAS theory is to design 
Multi-agent System having a coherent collective 
activity that achieves the right task. This property is 
named “functional adequacy" and the following 
theorem is proved: “For any functionally adequate 
system, there is at least a cooperative interior medium 
system which fulfills an equivalent function in the same 
environment". Therefore, it focuses on the design of 
cooperative interior medium systems in which agents 
are in cooperative interactions. The specificity of the 
theory: “the emergence” resides in the fact that the 
global function of the system is not coded within the 
agents. Agents have only a partial knowledge. The 
global function of this system emerges from the 
collective behavior of the different agents composing it. 
Each agent possesses the ability of self-organization i.e. 
the capacity to locally rearrange its interactions with 
others depending on the individual task it has to solve. 
Changing the interactions between agents can indeed 
lead to a change at the global level. This induces the 
modification of the global function. This capacity of 
self-organization enables to change the global function 
without coding this modification at the upper level of the 
system. Self-organization in AMAS is based on the 
capacity an agent possesses to be locally “cooperative”. 

Therefore AMAS agents locally cooperate in order 
to satisfy their own goals as well as they try to help other 
agents to achieve their goals. This notion of local goals 
is crucial for reaching a global solution, and is 
represented by a measure of criticality. This measure 
denotes the agent difficulty to reach its goals. It is used 
in a local way by agents in order to result in a system 
where the satisfaction of all agents is balanced. 
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Moreover, an agent will modify its behavior if it 
thinks that its actions are useless or detrimental to its 
environment. Such situations are called Non-
Cooperative Situations (NCS). Some behavioral rules, 
specific to NCS’s, help agents to solve or avoid these 
situations. By solving NCS’s, in regard to their own 
local goals, cooperative agents collectively find a 
solution to the global problem. Therefore one can 
consider the behavior of an AMAS as emergent.  

2.4 AMAS for co-initialization (Fixed Point 

Search Problem) 

In this part, we present the use of the AMAS theory 
as a guide for the design of a multi-agent system 
dedicated to the co-initialization (solving the fixed point 
search problem). Following the AMAS theory, we start 
by identifying agents, their neighborhood, their 
criticality and their perceptions and actions. After, we 
will very roughly describe the behavior of agents. 

2.4.1 Agents 

The objective of the co-initialization is to reach a state 
of the FMUs graph in which every input of every FMU 
is equal to the output of other FMU connected in input. 
We chose to represent in the form of agent the 
connections between FMUs. In other words, if an agent 
represents one link between only two FMUs then the 
extremities of the link must be equal. More exactly, we 
place an agent at every output of every FMU, as in 
Figure 8 

In this figure, the following equalities have to be 
satisfied: ����� 	 ��, ����� 	 �� and ����� 	 ��. 
Therefore, the proposed system is only composed of one 
agent type corresponding to links between FMUs. 

2.4.2 Neighborhood 

The neighborhood of an agent is defined as the set of 
all agents being directly influenced by it. Therefore, the 
neighborhood of an agent α corresponds to all agents in 
output of the FMU to which α is connected in input, as 
well as the agent α itself. For example (Figure 6), the 
neighborhood of the agent A is composed of agent A 
and B whereas the neighborhood of the agent C consists 
of three agents A, B and C. 

2.4.3 Criticality Measure 

The fixed point search problem is solved if, after 
having acted, every agent observes on its inputs a value 
equal to the one that it had assigned on its outputs in the 
previous step. In other words, the problem is solved if, 
for every agent: |!�"��# − ���"��#%�| 	 0 which 
constitutes the own objective of all agents of this system. 

The criticality represents the difficulty that an agent 
has to satisfy its own objective. In this case, the 
criticality measure is obvious: '(!�!')*!�+ 	 |!�"��# −
���"��#%�|. Following AMAS theory, all agents will try 
to decrease their criticality to 0 what will solve the fixed 
point search problem. 

2.4.4 Perceptions and Actions 

An agent A corresponding to the output S of a FMU, 
perceives on its input the value of S. A also perceives 
the values of criticality of all agents of its neighborhood. 
Finally, A perceives the value of partial derivatives 
(Jacobian matrix) of all FMU functions to which it is 
connected. 

The agent A can modify its own output, which is 
assigned a value to all FMU inputs to which S is 
connected. The agent action can thus be of three types: 
increase, decrease, or not change its value of output. 

2.4.5 Agent Behavior 

Our system is homogeneous, meaning that all agents 
possess the same behavior algorithm. The objective of 
each agent is to decrease the level of criticality of its 
neighborhood (including itself). The action of an agent 
can have a beneficial effect (which imply a decrease of 
the criticality), harmful (which causes an increase of the 
criticality), or indifferent (which does not provoke a 
variation of criticality) on each agent of its 
neighborhood. 

Thanks to the observation of the sign of Jacobian 
matrix of all FMU connected to its output, each agent 
can, to a certain extent, know the effect of its action. 

An agent has to form an idea of the amplitude and the 
direction in which it will vary the value of its output in 
order to decrease the criticality of its neighborhood as 
fast as possible. This information is represented by two 
internal variables, managed dynamically:  

• δ is a positive real value corresponding to the 
amplitude of the variation,  

• σ is an integer in {-1;0;1}, it indicates the direction 
of the variation.  

At each life cycle, an agent modifies its output value 
in the following way:  

ttt
aoo += −1  

Where ta  is calculated from the amplitude σ and the 
direction δ. Indeed, we apply a variation in the direction 
σ with amplitude equal to δ. Thus : 

Figure 6 : To the left, an example of FMU graph. To 

the right, the same graph with cooperative agents 
Figure 8 To the left, an example of FMU graph. To the 

right, the same graph with cooperative agents. 
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If δ=0, the variation is randomly decided between −δ 
and δ, both values being equiprobable. The presence of 
random can be justified by the fact that all agents 
perceive, decide and act simultaneously by following 
the same behavior. If the latter was purely determinist, 
the system would have to cope with the problem of the 
bar of El Farol (Whitehead, 2008), resulting in a non-
desirable synchronization of actions, and thus an 
ineffective exploration of the search space and a 
convergence outside the solution. 

According to their perceptions and following 
cooperative rules, agents adjust their δ and σ variables 
in order to decrease the criticality of themselves and 
their neighbors. Thus, the overall criticality tends to 
decrease over time, while the AMAS converges toward 
a solution. Due to the size of this paper, we will not 
describe the adjustment mechanism of agents. 

2.4.6 A case study: FMU graph generated with GSP 

In this case study, we consider three FMU: A, B and 
C having respectively two, four, and two outputs. Thus 
there are 8 agents in the AMAS system which will 
initialize the network. In the Figure 9, the neighborhood 
graph of agents is presented. Agents are assigned to 
outputs of the considered FMU network. Each FMU was 
exported according to the FMI 2.0 standard from 
Dymola with EDF Modelica library GSP.  
 

 
Figure 9: Neighborhood Graph 

From a theoretical point of view, for solving the fixed 
point search problem, the criticality of all agents should 
reach the value 0. However, in practice, due to 
numerical aspects, it may be reasonable to reach a value 
close to 0. In this case study, the fixed point search was 
stopped if agent criticalities reach a value lower than 10-
4. 
The Figure 10, shows the criticality curves of the eight 
agents. The total number of system cycles is indicated 
in abscissa and criticality values in ordinate. The best 

solution is reached after around 49000 cycles, with a 
residue (error) of 3.74 0 10%2.  

 

Figure 10: AMAS System Convergence 

In this case study, the AMAS system converges with 
low criticality values (lower than 10-4 ). Therefore, the 
presented system is able to co-initialize the FMU 
network with a reasonable precision. 

Moreover, the AMAS algorithm was previously used 
in quite different domains with several thousands of 
agents (corresponding here to the number of parameters 
of the FMUs). The resolution principle is totally local 
and depends mainly on two characteristics of the 
application: 

1. The number of agents influencing quasi-
linearly the solving time, 

2. the branching factor the agents (equivalent to 
the mean number of its neighbors). For a 
given class of problem (here co-initialization 
of FMUs), the number of cycles is stable. 

Consequently the duration of the co-initialisation 
problem depends roughly linearly of the number of 
FMU. 

3 Conclusions and perspectives 

This paper presents an overview of the Modelica 
library GridSysPro (GSP) composed of electrical 
components mapped on the zone related to the process 
of a Smart Grid. Beside that to comply with the 
modeling of large scale electrical networks a solution to 
co-initialize several interconnected FMUs exported 
from GSP/ Dymola, is described. More precisely the 
interconnection of several FMUs requires the 
determination of initial values of all FMU inputs (co-
initialization). This problem is complex and can be 
formulated as a fixed point search problem. We 
proposed the use of the AMAS (Adaptive Multi-Agent 
System) theory for designing a system able to solve this 
problem. We illustrate the suitability of the proposed 
system in a case study generated from GSP. 

The previously presented version of GridSysPro 
includes several components allowing it to represent and 
simulate an electrical network. Nowadays, we are 
moving toward the concept of Smart Grid which is an 
evolution of the electrical network allowing notably bi-
directional exchanges of energy and information 
through lines and an intelligent and autonomous control. 
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That is why an interesting perspective could be to 
integrate a set of advanced features to this library as part 
of the initiative on FMU, co-initialization and Modelica. 

As an example, the first advanced feature that will be 
integrated is an autonomous voltage regulation system. 
This feature is expected, on the one hand, to be able to 
build a coordinated regulation between medium voltage 
and low voltage networks and, on the other hand, to deal 
with the massive integration of decentralized generators.  

As previously seen, the Adaptive Multi-Agent 
System theory seems adapted to solve this kind of 
problem, notably by the amount of elements interacting 
in the system and by the need to support the topology 
changes.  

The proposed approach splits the problem into two 
steps. Firstly, informed agents get the voltage and power 
values from sensors they are linked with and cooperate 
with others in order to help them find the missing values. 
And secondly, agents communicate in order to find the 
set of voltage set-points to guarantee the compliance 
with the contractual voltage range at consumption 
points. Such an approach of this problem allows 
building a voltage regulation regardless of the size of the 
network. 
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