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Abstract

Because of the law of requisite variety, designing a controller for complex systems

implies designing a complex system. In software engineering, usual top-down ap-

proaches become inadequate to design such systems. The Adaptive Multi-Agent

Systems (AMAS) approach relies on the cooperative self-organization of au-

tonomous micro-level agents to tackle macro-level complexity. This bottom-up

approach provides adaptive, scalable, and robust systems. This paper presents

a complex system controller that has been designed following this approach, and

shows results obtained with the automatic tuning of a real internal combustion

engine.
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1. Introduction

Controlling a system means being able to perform the adequate modifications

on its inputs in order to set the outputs on a desired state. Over the course

of History, humans made tremendous efforts to control systems that are more

and more complex: nonlinear, dynamic, noisy, with a large number of inputs5

and outputs, and so on. Yet, the law of requisite variety [1] implies that the
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complexity of a controller has to be greater than or equal to the complexity

of the target system. Thus, the design of a controller involves the design of a

complex system. This is a challenge for engineering.

Complexity is often tackled a posteriori, to study existing systems. On10

the contrary, methods enabling the design of complex systems that meet strict

requirements are quite rare. The main feature of a complex system is that its

behavior can not be easily predicted [2]. Usual design methods, for instance

in software engineering, seek to a priori eliminate any unexpected event. The

design process must ensure that everything will be smooth at runtime. But,15

as any other complex system, complex programs sometimes have unexpected,

unpredictable behaviors, and these classical methods fail.

For instance, in the field of system control, the usual methods in the industry

rely on the construction of a fine mathematical model of the target system, that

is later used to compute the commands to perform, given some setpoints. The20

cost and difficulty of the construction (and the tuning) of a mathematical model

is high. An often used alternative is machine learning. Giving the ability to

learn to a controller enables it to learn the behavior of the target system and

build a model from data. However, this method shows its limits when used

with complex systems. Nonlinearities in the learnt model lead to overcostly25

or impossible computations in the control system. Another possibility exists:

directly learning the adequate commands, instead of a model that will later lead

to the said commands. We then focus only on the inputs and outputs of the

controlled system, without trying to decipher its internal mechanisms.

Another difficulty is scalability. While various control methods exist, they30

(almost) all fail to scale when a large number of inputs and outputs are involved.

Most advanced solutions rely on the distribution of the control. Instead of letting

a central controller handle all the inputs, each input is controlled by one local

controller, and all controllers try to cooperate to control the whole system.

Multi-Agent Systems (MASs), composed of autonomous entities, are natu-35

rally distributed. They can be very useful to the problem of the control of com-

plex systems, for instance with multi-objective optimization[3]. Moreover, they

2



bring innovative design methods. In particular, Adaptive Multi-Agent Systems

(AMASs) are designed to be able to self-adapt at runtime to any unexpected

event. Instead of wasting time trying to cope with any possible event during the40

design phase, we let the system deal with the unexpected at runtime. Driven

by cooperation principles, agents self-organize locally to produce and maintain

the desired global function.

This paper presents experimental results obtained with an AMAS designed

to control complex systems, and applied to the calibration of real heat engines.45

This system is fully described in English for the first time in this paper. Able

to learn and control simultaneously, it provides a generic and robust solution

to the problem of control. It is a good example of the ability of AMASs to be

efficient in real life conditions.

Section 2 gives a quick background on control. Section 3 introduces our50

approach and section 4 presents our system. Results, obtained in simulated as

well as in real conditions, are showned in section 5. Section 6 concludes with

our perspectives.

2. Related Works

Our work is at the crossroad of the fields of complex systems, control, and55

machine learning. It is inspired by the ideas of Edgar Morin on complexity [4],

which we apply here to the design of self-adaptive control systems.

2.1. Complex Systems

The notion of complexity reflects the difficulty to analyze a system and

to forecast its behavior. Nonlinearities, inner feedback loops, large number60

of inputs/outputs/inner parts, uncertainty on the measures, and unpredictable

behaviors are some of the recurring features of complex systems. However, there

is no common agreement on a definition. For instance, Kolmogorov defines the

complexity of a string as the length of the shortest description of said string [5].

While it is largely accepted, this measure implies that a purely random string65
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is of maximal complexity, as it can only be described by its full enumeration.

However this contradicts one of the key features of complexity: it is situated

somewhere between total order and total chaos [2]. Moreover, a complex system

is dynamic, it is able to spontaneously change its state. It is important not to

neglect this aspect during the analysis or the design of a system. Measures such70

as Kolmogorov complexity give too much attention to static, structural features

of systems, and not enough to their dynamics. To this end, dynamical depth is

based on the idea that the degree of complexity of a system is not given by its

part and their causal relations, but by the imbrication of the different dynamics

that drive its behavior [6].75

Furthermore, the general system theory states that the classical analytical

approach can only be applied on systems whose parts are linear and share neg-

ligible interactions [7]. This lets a lot of systems out of its scope, in particular

complex systems. We need to follow a different approach than the reductionist

top-down analysis for complex systems control as well as for complex systems80

design. The Adaptive Multi-Agent Systems theory is being developped in this

regard.

2.2. Control

Control approaches also find their limits when faced with complexity. Artifi-

cial Intelligence (AI), and in particular machine learning, are used to overcome85

these limits.

The objective with AI in control is to automatically learn either the model of

the target system, the tuning of the model, the calibration of the controller, or

directly control laws from observations. For instance, [8] uses a genetic algorithm

to learn the optimal tuning of PIDs. This approach gives excellent results but90

needs a large number of iterations. Moreover, if the behavior of the controlled

system changes over time (for instance, because of mechanical wear), the tuning

must be entirely redone, it is not adaptive.

The biggest difficulty of dual control is to find the correct balance between

probe actions and control actions. A way to do this is to use neural networks95
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to learn this balance from data [9]. This approach is limited to control affine

systems, i.e. systems that reacts linearly to modifications on their inputs.

The most promising approach for scaling up, i.e. for controlling a large

number of inputs with many criteria on many outputs, is to distribute the

control. For instance, [10] and [11] control road traffic junction signals on several100

crossroads. In these approaches, there is no central controller that handles all

the traffic junctions, each crossroad is controlled by a local controller. [10] uses

learning classifier systems, while [11] uses a combination of neural networks,

genetic algorithms and fuzzy logic. They obtained very interesting results, but

the difficulty to instanciate their approaches to real life problems is a severe105

drawback.

Our approach uses feedback loops to learn not the model of the controlled

system but the control laws themselves, and distributes a controller on each

controlled input. Inner feedback loops ensure an adequate balance between

exploration and exploitation of the model.110

2.3. Machine Learning

A program learns when it is able to improve its functionnality using its ex-

perience, i.e. data acquired during its execution [12]. Machine learning has

been heavily influence by the way we think the human mind works. The two

well-known methods for machine learning are supervised learning and unsuper-115

vised learning, whether examples of the expected results are presented to the

learning program or not. However, this distinction is merely technical and does

not allow to highlight the fundamental differences between machine learning

algorithms. We prefer the following five categories: Behaviourism, Cognitivism,

Connectivism, Evolutionism, and Constructivism.120

Behavourism considers the learner as a black-box. Learning occurs when the

observed behaviour changes in response to the dynamics of the environment. In

machine learning, the behaviour is then a product of the initial state of the

program and its progressive conditioning by its environment through a feed-

back loop. Reinforcement learning can be considered as a behviourist machine125
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learning approach. It is notably popular in robotics [13]. Its most well-known

algorithm is Q-Learning [14].

On the contrary, cognitivists consider that what is important is not what the

learner does but what he knows. Cognitivist machine learning algorithms clas-

sically relies on symbol manipulation, and thus on a predefined set of symbols,130

which is not adequate when dealing with complexity [15].

Connectionism considers learning at a lower level in the brain: the dynamic

interconnection of neurons. In machine learning, it regroups all the artificial neu-

ral network algorithms, from back-propagation perceptrons to the more recent

Kohonen maps [16] and deep learning algorithms [17]. They show impressive135

results but need a huge amount of data and computing power.

Evolutionism considers learning at the scale of a species rather than an indi-

vidual. Evolutionary algorithms evolve a population of solutions towards better

solutions by evaluating them, mutating them, and crossing the best individ-

uals. These algorithms are interesting because they can tackle problems for140

which there is no known solution, but they are time-consuming and the fitness

function can be difficult to obtain [18].

Constructivism is the idea that humans have the ability to construct knowl-

edge in their own mind through interactions with the environment. Construc-

tivist artificial intelligence aims at designing self-constructive systems [19]. In145

such systems, not only the knowledge but the means to acquire it are learned.

The focus is made on self-organization and bottom design methods.

Note that there are no hard boundaries between these categories. Most

advanced machine learning algorithms actually take simultaneously from several

of them. For instance Learning Classifier Systems stems from Behaviourism150

since they are reinforcement learning algorithms, but they also incorporate an

evolutionary component [20].

The Adaptive Multi-Agent Systems approach is constructivist: it focuses on

self-organization and shares the same long term goal of desigining a fully self-

constructed artificial intelligence. It also has a link with connectionism with the155

idea that a complex task can be achieved by a set of several simple entities.
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3. Approach

Top-down classical methods have severe shortcomings when it comes to

complexity: scale, integration, and flexibility [19]. This section presents the

Adaptive Multi-Agent Systems (AMASs) theory, that aims at overcoming these160

limitations thanks to the natural modularity of MASs and cooperative self-

organization of agents.

3.1. Adaptive Multi-Agent Systems

Wooldridge defines an agent as follows: An agent is a computer system that

is situated in some environment, and that is capable of autonomous action in165

this environment in order to meet its delegated objectives. [21] "Autonomous

action" means an agent takes its own decision on what to do and when to do

it. It indefinitely follows a lifecycle of perception, decision and action without

any external control.

A system composed of several agents in interaction in the same environ-170

ment is called a Multi-Agent System (MAS) [22]. Knowledge, computation,

and control are distributed among the agents of a MAS. Such systems are based

on collective problem solving, the idea that local behaviors within a group can

ensure the achievement of a given global task. Multi-agent systems provides in-

teresting features when dealing with complexity, such as scalability, robustness175

and adaptivity [23].

The function of a MAS is dependent on its organization (the agents, their

relations, their behavior). A change in the organization of the MAS is a change of

its global function. When agents decide themselves to dynamically change their

behavior or their relations, the system is self-organizing. Di Marzo Serugendo180

et al. define self-organization as the process with which a system changes its

structure without any external control to respond to changes in its operating

conditions and its environment [24]. It is very natural and powerful for a MAS

to perform learning and self-adaptation this way.

The Adaptive Multi-Agent Systems approach aims at facilitating the design185

of multi-agent systems for solving complex problems by designing simple agents
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that self-organize to generate a complex global function [25]. In this approach,

the process of self-organization is driven by cooperation principles. Local deci-

sions from each agent may provoke local changes that in turn lead to changes

in the global function of the system.190

This approach is based on the theorem of functional adequacy [25]. Applied

to MASs, one of the consequences of this theorem is the assurance that the

global function of a system is adequate if all agents maintain interactions with

their environment that are favorable to themselves and to their environment

(they are said to be in a cooperative state). Then, the challenge is to find the195

behavior for each agent that enables each of them to remain in a cooperative

state despite changes in their environment.

To this end, each agent has two sets of rules. Nominal rules enable an agent

to achieve its function when it is already in a cooperative state. However, it

is highly probable that the agent eventually finds itself unable to achieve its200

function, due to changes in its environment, or to a simple lack of knowledge.

Such cases are called Non-Cooperative Situations (NCSs) and are probable cause

of failure for the global system to achieve its task. There are seven types of

NCSs:

• Incomprehension: the agent is not able to extract information from the205

perceived signal.

• Ambiguity: the agent can interpret the perceived signal in several different

manners.

• Incompetence: the agent is not able to decide anything based on its current

knowledge and skills.210

• Unproductiveness: the decision of an agent is to do nothing.

• Concurrence: the agent thinks its action will have the same effects as the

action of another agent.

• Conflict: the agent thinks its action is discordant regarding the action of

another agent.215
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• Uselessness: the agent thinks that its action will have no consequences on

its environment.

When a NCS occurs, the involved agents switch from tjeir nominal behavior rules

to their cooperative rules, which seek to solve the NCS by provoking changes in

the MAS (in other words, by triggering self-organization). An agent has several220

means to solve a NCS: tuning internal parameters, reorganizing its relations

with other agents, creating of a new agent, or self-destructing.

In the current state of the approach, the AMAS designer has to design the

cooperative behavior for each NCS. A methodology named ADELFE (French

acronym for Toolkit for Developping Software with Emergent Functionalities)225

guides the design of AMASs [26]. It is a bottom-up and iterative design process

that encourages the designer to focus on the local function of each agent, and to

forget the global function of the system. A strong focus is put on decomposing

the problem instead of the solution. The resulting agents will often be following

simple (yet intricated) reactive behavioral rules, and thus will seem too simple230

to solve anything. It is the point of our approach: dodging complexity by

thinking exclusively within a local scope. If agents behave accordingly to the

AMAS principles of cooperation, the emerging global function shall be adequate.

Originally based on the Rational Unified Process [27], ADELFE incorparates

specific steps and guidelines to help identify the entities of the problem and235

which ones should become agents, and find their NCSs and their cooperative

behaviors. It has been used for the development of the system presented in 4.

3.2. Objectives in Terms of Control

Other than pushing forward the experimental verification of the AMAS ap-

proach, the main objective of this work is to design a system able to learn in real240

time how to put a complex system in a desired state. In our case, the controlled

system may have multiple inputs and outputs (MIMO), and the desired state

is described as a combination of criteria. A criterion may affect one or several

inputs or outputs. There are three types of criteria:
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• Constraint: a threshold to meet245

• Setpoint: a target value

• Optimization: a value to minimize or to maximize

An additional requirement is that the controller must be easy to implement for

real-life complex systems. In particular, this means the controller should not

need a heavy tuning and should not require any predefined model. In other250

words, prerequisite knowledge on the controlled system has to be minimal.

Moreover, the learning process has to be perpetual and in real time. It has

to occur simultaneously to the control, so the controller adapts itself to changes

in the controlled system (such as failures, wear, etc). Our controller sees the

controlled system as a black box: it only has access to the inputs and the outputs255

of the black box, not to the internal processes that drives its behavior.

4. ESCHER, an Adaptive MAS to Learn the Control of Complex

Systems

In this section we present a multi-agent system called ESCHER, for Emer-

gent Self-adaptive Controller for Heat Engine calibRation. Thanks to cooper-260

ative self-organization, it is able to learn in real-time the control of a system.

It has been designed and tested during a project revolving around automotive

thermal engines, but has been design under the asumption that nothing is known

about the controlled system, except its number of inputs and outputs.

The goal is to make the controller generic enough to be used on any other265

systems without any modifications other than the interface. Following a "black

box" approach of the control, ESCHER plays with the inputs of the controlled

system, observes the effects on the outputs and infers the actions that will lead

to compliance with the user-defined criteria.

4.1. System Overview270

The environment of ESCHER is composed of the controlled system and of

the user defined criteria. This means that ESCHER observes the inputs and
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outputs of the controlled system, and also the control criteria defined by the

users. Among the inputs of the controlled sytem, there may be some that are

not controlled by ESCHER but have an impact on the controlled system. For275

instance the atmospheric pressure cannot be controlled but can significantly

alter the output of a thermal engine. If such a sensor is available, it can be

taken into account by ESCHER.

ESCHER itself is composed of four types of agents:

• Variable Agents are the eyes of the system, there is one Variable Agent280

for each input and output of the controlled system.

• Criterion Agents represent user-defined criteria, the desired state of the

controlled system.

• Context Agents can be seen as the memory of the system, they represent

a part of the state space of the environment for which the consequences285

of a given action are known.

• Controller Agents are the hands of the system, they interact with a set

of Context Agents to find the most adequate action to perform in the

environment.

Figure 1 shows an overview of the system, with the links between the four types290

of agents. Note that this view is intended for the reader, agents do not have a

global view of the system.

4.1.1. Context Agents and Controller Agents

Each Controller Agent is coupled with a set of Context Agents whose mem-

orized action is related to the effector associated to this same Controller Agent.295

The Controller Agent selects the next action to perform among the received

suggestions and notifies the Context Agents which has sent a suggestion. There

is no direct interaction between Context Agents, neither between Controller

Agents. The only link between them is through the environment: the action of

a Controller Agent will have an impact on the controlled system which will be300
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Figure 1: A View of all the Agents of ESCHER

perceived from other Controller Agents through Variable Agents and Criterion

Agents.

A Controller Agent and its set of Context Agents can be seen as an auto-

mous MAS. Its environment would be made of Variable Agents and Criterion

Agents. A Context-Controller "sub-MAS" is able to synchronize its actions with305

the other sub-MASs by observing the controlled system’s inputs and outputs

variations. A Controller Agent does its best to decrease the critical levels by

performing actions on only one input, locally, without caring about how the

other inputs are handled. There is no global decision process to find the ad-

equate actions on each input at once. This feature is the key to scalability.310

Moreover, the distribution of control makes ESCHER modular. The addition

or the removal of a new Controller Agent does not impact the others.

4.1.2. Variable Agents and Criteria Agents

To fulfill its function, each agent besides Variable Agents, needs to know the

current state of the controlled system. This is why Variable Agents send value315
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update to every other types of agents (the relevant Criterion Agents, every

Context Agent, every Controller Agent). This broadcast may seem harmful

for scalability, but it is not. Indeed, agents of ESCHER are not physically

distributed, the cost of message sending is very low. On the contrary, the

cost of reading the value of a physical sensor is high, since it involves external320

systems, and probably networking. Hence, it is way more efficient to have an

agent per sensor, broadcasting its value to others than to give access to a sensor

to every agent needing this particular value.

Criterion Agents transform the variable values into critical levels, represent-

ing the satisfaction of the criteria (i.e. a idea of how far from the desired state325

is the current state of the controlled system). Variable Agents and Criterion

Agents give ESCHER a complete representation of its environment.

At a given moment, if every agent in the system is able to properly perform

its function, then ESCHER is in a cooperative state and its global function is

adequate. However, numerous cases exist where at least one of the agents is330

unable to execute its function. These cases are the Non-Cooperative Situations,

that are presented in section 4.3.

4.2. Function and Nominal Behavior of ESCHER Agents

This section presents a decomposition of the activity of control in elementary

tasks. Agents in charge of these tasks are detailed.335

4.2.1. Observing the Controlled System

The first thing we need when it comes to controlling a system with a "black

box" standpoint is to be able to observe it. A specific type of agents is in charge

of the perception of the controlled system: Variable Agents. To each input and

output of the system is associated a Variable Agent. During its lifecycle, a340

Variable Agents perceives the value of its designated variable on the controlled

system and forwards it to the other agents which may need this information. If

necessary, a Variable Agents may embed a noise filtering algorithm.
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Figure 2: Examples of Criticality Functions

4.2.2. Representing Control Criteria

The controller needs to have an internal representation of the objectives of345

the user, of the desired state for the controlled system. Giving such a represen-

tation is the function of Criterion Agents. There are three types of Criterion

Agents:

• Threshold: the agent expresses the will to maintain a variable either above

or below a user-defined threshold.350

• Setpoint: the agent expresses the will to set a variable to a user-defined

value.

• Optimization: the agent expresses the will to minimize or to maximize the

value of a variable.

Each Criterion Agent receives updates from the relevant Variable Agents, com-355

putes a critical level, and sends it to other agents which may need this informa-

tion. This critical level reflects the satisfaction of the criterion represented by

the agent. The critical level ranges from zero (the critrerion is fully satisfied)

to 100 (the criterion is far from being satisfied).

Figure 2 shows examples of criticality functions used by Criterion Agents360

to compute their critical level. For instance the threshold criticality function

returns zero if the threshold is met, otherwise a value up to 100. The criticality

function for a setpoint returns zero only when the target value has been reached.

The criticality function of an optimization criterion is asymptotic to zero. The
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curves of these functions can be adjusted by the user to define the relative365

significance of its needs.

Criterion Agents apply a transformation from the space of the controlled

system variables to the space of the criteria. The critical levels decrease when

their criterion is being satisfied. Hence, agents perceiving critical levels seek

to decrease them. The only way to do so is to perform adequate actions on370

the input of the controlled system. Finding these adequate actions requires the

analysis of the current state of variables and criteria to try to understand the

dynamics of the system.

4.2.3. Analyzing the State of the Environment

With the Variable Agents and the Criteria Agents, ESCHER has an internal375

distributed representation of its environment. To be able to decide which actions

to perform, an analyzis of this environment is needed. This is the function of

Context Agents.

A Context Agent memorizes the effect, on each critical level, of a particular

action performed on a particular effector. The agent also memorizes the state of380

the environment when the action is performed. This provides information about

the expected consequences of a particular action if the action is performed while

the environment is in a particular state.

Concretely, a Context Agent is composed of:

• an action, i.e. an offset to be performed on an input of the controlled385

system,

• a set of forecasts, which contains a value for each Criteria Agent, repre-

senting the expected variations of critical level,

• a set of validity ranges, which contains a value range for each Variable

Agent, representing the state of the controlled system.390

A Context Agent receives value updates from Variable Agents, and critical level

updates from Criterion Agents. When the current value of each Variable Agent
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is inside their corresponding validity range, the Context Agent is said valid. This

means the controlled system is in a state in which the forecasts of the agent are

relevant. When a Context Agent becomes valid, it sends a notification which

contains its action and its forecasts. This notification is actually an action

suggestion. Let p a suggestion (1):

p := (a, F ) (1)

where a is an action and F is a set of critical levels forecasting functions. Thus,

a function f i ∈ F returns the critical level of Criterion Agent i forecasted by

the Context Agent if a is performed. Such a function can be expressed as (2):

f i(a) = ci + δi(a) (2)

where ci is the current critical level of Criterion Agent i, and δi is a function

resulting from the learning of the Context Agent. In practice, a Context Agent

sends an action suggestion together with a set of values f i(a), not a set of

computable functions f i. We only show expression (2) to explicit a part of the

learning of Context Agents, which will be discussed later.395

A notification is also sent when the Context Agent becomes non-valid so its

suggestion is withdrawn. These suggestions and notifications are received by

the Controller Agent in charge of the affected effector. This new type of agent

is presented in the next paragraphs.

4.2.4. Performing the Most Adequate Action400

A Controller Agent is associated to each input controlled by ESCHER. The

function of a Controller Agent is to perform the most adequate action on this

input, i.e. the action which will provoke the greatest decrease of critical level.

An action may be increasing, decreasing, or maintaining the value of the input.

Let ut the current value of the input controlled by the Controller Agent,

and at the action performed by the Controller Agent at its lifecycle t. The next

value of the input is given by equation 3.

ut+1 = ut + at (3)
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At each lifecycle t, the Controller Agent chooses at according to its internal405

representations, which are composed of:

• Ct, the set of critical levels, updated at lifecycle t.

• Pt, the set of action suggestions from valid Context Agents at lifecycle t.

Among Pt (the received suggestions), the Controller Agent chooses the action

associated with the greatest decrease of the highest critical level. If the high-410

est critical level is not expected to vary, according to the forecasts, then the

Controller Agent seeks to decrease the second highest critical level, and so on.

Hence, for each suggestion pkt ∈ Pt, the Controller Agent looks at fkmax ∈ F kt ,

the function which returns the highest critical level (in other words, the function

corresponding to the most critical Criterion Agent). This function is defined by

equation 4.

fkmax := fkt ∈ F kt , fkt (akt ) = max
f∈Fk

t

(f(akt )) (4)

The chosen at is the action from the suggestion with the lowest fmax(a), while

being lower to the current highest critical level (equation 5).

at := ai ∈ At, f imax(ai) = min
k

(fkmax(a
k)) ∧ f imax(ai) ≤ max Ct (5)

where At is the set of actions contained in the suggestions from Pt.

The Controller Agent then performs the action at and sends:

• an acceptance notification to the currently valid Context Agents whose415

action has been selected and performed,

• a rejection notification to the currently valid Context Agents whose action

has not been selected,

• in case of the current action is different from the action of the previous

step, a waiver notification to the Context Agents which suggested the420

previous action.

Of course, at any given time, a Controller Agent may not be able to make

a good decision (i.e. a decision that will lead to the decrease of critical levels),
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because of false or incomplete information. These cases are Non-Cooperative

Situations (NCSs). They occur when ESCHER has not sufficiently learned and

is not fully adapted to its environment. For instance, if the condition 6 is not

met, then equation 5 cannot be applied.

∃pit ∈ Pt,∃f imax ∈ F it , f imax(ai) ≤ max Ct (6)

The occurence of a NCS triggers a specific behavior (the cooperative behav-

ior) of the involved agents to solve it and set the agents in a cooperative state.

Solving NCSs drives the whole system towards a state of functional adequacy.

NCSs and their resolution are presented in section 4.3.425

4.3. Non-Cooperative Situations

This section explains how agents detect and solve NCSs. Since they provoke

changes in the organization of the system, NCSs and their resolution are the

key to the self-adaptativeness of AMASs. Each agent locally solves the NCSs it

detects, thanks to specific actions. In ESCHER, NCSs mainly occur for Context430

Agents and Controller Agents. They motivate the system to self-organize, in

particular by creating, modifying, or deleting Context Agents.

4.3.1. NCS 1 : Controller Agent Incompetence

Detection: When a Controller Agent doesn’t receive any action suggestion,

Pt = ∅, hence At = ∅. In this situation, the agent is not able to choose an435

adequate action using equation 5: it finds itself in a NCS of incompetence.

Resolution: The resolution of this NCS has two steps. First, the Controller

Agent has to choose an action on its own. Its choice is based on the effects of

its previous action. If the critical levels are increasing, the new action is chosen

as the opposite of the previous action, otherwise the previous action is repeated

(equation 7).

at :=

at−1 if max Ct < max Ct−1

−at−1 otherwise
(7)

If t = 0, then the new action is randomly chosen.
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If the previous action had been selected from Pt−1 and is continued, the

Controller Agent does not send a waiver notification to the Context Agents

that had suggested it at t−1, even if they are now non-valid. They may need440

this information to learn (see NCS 6).

Otherwise, after having determined its new action, but before performing it,

the Controller Agent creates a new Context Agent. This new Context Agent is

initialized with the new action, and memorizes the current value of all variables.

While the highest critical level decreases, the Controller Agent continues the445

same action. During this time, the new Context Agent observes the variations

of all critical levels to set its forecasts. Finally, when the action is abandoned,

the Context Agent sets its validity ranges with the minimum and maximum

observed on each variable.

4.3.2. NCS 2: Controller Agent Unproductiveness450

Detection: When none of the received action suggestions contains forecasts

of a decrease of the highest critical level (condition 6 is not met), the Controller

Agent is in a NCS of unproductiveness. Its nominal decision process (select the

action associated to the biggest decrease of the highest critical level) does not

produce any action. There are two ways of solving this NCS, depending on the455

received suggestions. Let A the set of all possible actions for the Controller

Agent, at each time step t we have At ⊆ A.

Resolution 1: If At = A, in other words if every type of actions (increment,

decrement, stay) has been suggested, the Controller Agent thinks that the high-

est critical level can not be decreased, whatever the agent may do. Then, the

agent attempts to decrease the second highest critical level (without increasing

the highest critical level). If it is not possible, it will look at the third highest

critical level, and so on. If there is no forecasted decrease at all, the agent

chooses the least harm: the action associated with the smallest increase of the

highest critical level is chosen (equation 8).

at := ai ∈ At, f imax(ai) = min
k

(fkmax(a
k)) (8)
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Resolution 2: The second case is when At 6= ∅ ∧ At 6= A. It means that

some actions have not been suggested, they have not been tested in the current

state of the environment. Since none of the received action suggestions contains460

forecasts of decrease of the highest critical level, they actually contain actions

to avoid. Let Ac = A − At the set of candidate actions, i.e. actions that are

not currently suggested. The Controller Agent then decides to select an action

among the ones which are not suggested (which we call candidate actions). The

selection of the new action is similar to the resolution of the NCS 1 but is, this465

time, conditioned by the presence of this action in Ac (9).


at = at−1 if at−1 ∈ Ac ∧ max Ct < max Ct−1

at = −at−1 if − at−1 ∈ Ac ∧ max Ct ≥ max Ct−1

at = rand(Ac) otherwise

(9)

With the same conditions than in the NCS 1, the Controller Agent may create

a new Context Agent, initialized in the same manner.

4.3.3. NCS 3: Controller Agent Conflict

Detection: When a Controller Agent applies an action suggested by a Context470

Agent, it expects that the critical levels will vary in the way indicated by the

forecasts. If the Controller Agent notices that it is not the case, it thinks that

the action that has just been performed may be harmful, it is a conflict NCS.

Resolution: The action must be stopped. The Controller Agent abandons

the action and notifies the Context Agents which had suggested it when it was475

selected. Moreover, if the Context Agents which were wrong are still valid, they

will be temporarly ignored in future step.

4.3.4. NCS 4: Context Agent Conflict (false forecasts)

Detection: When the action of a valid Context Agent is being performed, said

agent observes the variations of critical levels. When the action is terminated,480

the agent compares the observed variations with its forecasts. There is a conflict
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NCS if at least one of the observed variation contradicts the forecast (their

direction of variation is different).

Resolution: An error in the direction of variation of a forecast is probably more

than a simple mistake in the initial observation, it is not a problem of forecast485

adjustement. This rather indicates that the Context Agent should not have

sent its suggestion, it should not have been valid. To correct this situation, the

Context Agent will reduce its validity ranges, bringing closer the nearest bound

to the current value of the corresponding variable.

4.3.5. NCS 5: Context Agent conflict (inaccurate forecasts)490

Detection: This NCS is similar to NCS 4. But this time, the observed vari-

ations are in the same direction as the forecasts, but not of the same amount.

This kind of observation is sensitive to noise on the perception of variable values,

hence small differences (under 5% of criticality) are ignored.

Resolution: An error in the amplitude of variation is less serious than an495

error in the direction of variation. The Context Agent only needs to adjust its

forecast. Thus, in this case, the agent does not change its validity ranges, but

rather increase or decrease the erroneous forecasts so they fit its observations.

4.3.6. NCS 6: Context Agent Incompetence

Detection: It happens that a Context Agent whom action is being performed500

becomes non-valid, but does not received any reject nor waiver notification from

the Controller Agent (it is a possible outcome of NCS 1). The Context Agent

is then in an incompetence NCS, this situation is not covered by its nominal

behavior.

Resolution: From its standpoint, this situation means that the Controller505

Agent considered that its action can be kept a little longer. Hence, to keep

sending what could be a good suggestion, the Context Agent extends the validity

ranges that make him non-valid.
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4.3.7. NCS 7: Context Agent Uselessness

Detection: Sometimes, after several NCS 4, some validity ranges of a Context510

Agent have been so shrinked that their amplitude is near zero. If the amplitude

of at least one validity range falls under the threshold of minimal size, the

Context Agent is in a uselessness NCS, the chances of being valid are too low.

By default, the threshold is equal to one hundredth of the domain of the variable.

This NCS is ignored for unbounded variables.515

Resolution: A useless Context Agent can do nothing else than delete itself

to solve this situation. Indeed, a Context Agent can only learn if its action

is selected while valid. If the agent is never valid, it never brings information

to the system and never learns. By deleting itself, the agent frees computation

ressources. This NCS is not pivotal for ESCHER. The presence of useless agents520

does not prevent the adaptation and functional adequacy of the whole system.

But this NCS avoids overages of Context Agents. To avoid that too many

deletions and a loss of memory, we advise to set

4.3.8. NCS 8: Context Agent Unproductiveness (validity ranges)

Detection: This NCS concerns a Context Agent which has been valid, selected,525

then became non-valid, and observed a decrease of critical levels. This is an

ideal cases, everything went fine. This is why a Context Agent in this situation

considers that its action may still be relevant, even if the agent itself is now non-

valid. This is an unproductiveness NCS: the nominal decision process results

in doing nothing (since the agent is not valid), while there is good chances that530

sending an action suggestion should be a good thing to do.

Resolution: The Context Agent expands the validity ranges that make it non-

valid, so it is now valid. The agent also sends an action suggestion. If the

agent was wrong to send a suggestion, a NCS 4 will occur and the ranges will

be shrinked. Likewise NCS 7, this situation is not crucial for the system, but535

enables a finer adaptation for a limited risk.
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4.3.9. NCS 9: Context Agent Unproductiveness (suggested action)

Detection: A Context Agent whose action has been selected several times in a

row considers itself in unproductiveness NCS. Indeed, the agent thinks that the

ideal case would be that its action should provoke a greater decrease of critical540

level so it only has to be performed once. The Context Agent hence seek to

adjust the amplitude of the suggested action, in a way to maximize the decrease

(or minimize the increase) of critical levels.

Resolution: The adjustment of the amplitude of the action is based on the

estimation of the effects of the variation of the amplitude on the variation of545

critical levels. The idea is to increase or decrease the amplitude of the action in

a way to accelerate the decrease (or slow down the increase) of critical levels. To

this end, a Context Agent which has been selected several times in a row slightly

and randomly changes the amplitude of the suggested action and correlates this

variation with the speed variation of critical levels. Hence, if the highest critical550

level is decreasing:

• quicker while the amplitude has been increased: the Context Agent keeps

increasing the amplitude ;

• quicker while the amplitude has been decreased: the Context Agent keeps

decreasing the amplitude ;555

• slower while the amplitude has been increased: the Context Agent de-

creases the amplitude ;

• slower while the amplitude has been decreased: the Context Agent in-

creases the amplitude ;

The Context Agent does the exact opposite if the highest critical level is in-560

creasing, although this rarely happen since it is not frequent that an action is

continued if it has provoked a rise of the highest critical level. Note that a

maximal amplitude can be set in order to avoid too brutal actions.
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4.3.10. Conclusion on Non-Cooperative Situations

This section has presented the NCSs encountered by the agents of ESCHER.565

In particular, the resolution of these situations provokes the creation, the dele-

tion, and the modification of Context Agents, which are the memory of the

system. In other words, NCSs provoke the memorizing, the forgetting, and the

correction of knowledge based on observations of the real system: their resolu-

tion enables ESCHER to learn and self-adapt.570

NCSs 1 and 2 correspond to the acquisition of new informations. They occur

when ESCHER is discovering a new part of the state space of its environment.

They open the system as they add new Context Agents.

NCS 3 enables ESCHER to not persist in error. It is partially solved thanks

to the reorganization of the relations between a Controller Agent and some of575

its Context Agents. Indeed, the Controller Agent ignores some of the Context

Agents if they have been wrong.

Context Agents always self-evaluate. Hence, NCSs 4 to 9 are detected if one

of the parts is no longer adapted to the environment. They are solved by the

adjustment of the agents (except for NCS 7 which is solved thanks to openness).580

Hence, ESCHER is always self-evaluating and self-adapting.

4.4. Learning and Adjustment

A large part of the learning of the system relies on the tuning of Context

Agents’ internal parameters during the resolution of a NCS. All these parameters

are tuned thanks to Adaptive Value Trackers (AVT, [28]). These parameters585

are: the boundaries of the validity ranges, the amplitude of the suggested action,

and the values of the forecasts.

An AVT converges towards a value thanks to binary feedbacks: lower if the

real value is lower, or greater if the real value is greater. Both the value and

the variation step of the tracker are dynamically tuned. The variation step is590

increased when two consecutive feedbacks are equal, and decreased otherwise.

These variations follow user-defined coefficients. Figure 3 shows an example of

the variation of the value of an AVT with standard settings (two equal con-
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Figure 3: Typical Convergence of an Adaptive Value Tracker

secutive feedbacks double the variation step, two different consecutive feedback

divide the variation step by three). A plus sign means the AVT received a595

greater feedback, a minus sign means it received a lower feedback.

A Context Agent transforms its observations and received notifications into

feedbacks for its numerous numerous AVTs. For instance, a Context Agent

in NCS 5 observing a greater variation of critical levels than what its forecast

indicates will send a greater feedback to the corresponding AVT. The tracker600

then increases its value. Of course, the new value of the forecast may not

be equal to the observation. But given the dynamics of the environment and

the inevitable noise on real sensors, perfectly fitting to the observations is not

desirable.

AVTs quickly converge toward a value, are able to stabilise, and to move605

again quickly toward a new further value. They match our needs, as the pa-

rameters of agents often have to change, often drastically.

4.5. Comparison with Existing Approaches

ESCHER has been presented as a control system because it has been de-

signed to control. Nevertheless, learning plays a crucial role in this system.610

This section explores this two complementary sides of our system and their

links through comparisons with the Dual Control Theory and with Learning

Classifier Systems.
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4.5.1. Comparison with Dual Control.

In the Dual Control Theory, the controlled system is partially known. The615

controller applies either probe actions to learn and refine its model of the con-

trolled system, or control actions to put the controlled system in the desired

state [29]. Too many probes hampers the control, but too many control actions

makes a small gain. Finding the balance between probe actions and control ac-

tions requires to solve the difficult Bellman equation, which is not easily feasible620

in real cases.

Like dual controllers, ESCHER faces unknown systems and learns from its

actions. However, it learns from all of its actions and all of its actions seek to

put the controlled system in the desired state. All of its actions are probes and

control actions at the same time. Moreover, unlike dual controllers, ESCHER625

does not need a predifined model that is later adjusted by learning.

The need to lower the critical levels (even when no agent indicates how to do

it), combined to the fact that ESCHER learns from each of its actions, can be

seen as an approach to solve the problem of balance between probes and control

actions. The control process drives the learning process towards interesting630

states of the environment, while getting closer to the desired state (and thus

preventing to stray away and visit uninteresting distant states).

4.5.2. Comparison With Learning Classifier Systems.

Learning Classifier Systems (LCSs) are reinforcement learning systems [20].They

are composed of a set of behavior rules, a pairing system which matches states635

of the environment with rules conditions, a selection mechanism between simul-

taneously triggered rules, and a genetic algorithm to tune the set of rules.

There are several similarities between a LCS and a Controller Agent coupled

with its set of Context Agents. Context Agents play the same role than the pair-

ing system (with their validity ranges) and the set of rules (each Context Agent640

can be seen as a behavior rule since it suggests an action under certain condi-

tions). The Controller Agent plays a similar role than the selection mechanism,

chosing an action among several suggestions from valid Context Agents.

26



The main difference comes from the fact that Context Agents are autonomous,

they learn by themselves. On the contrary, the rules of a LCS are processed by645

a genetic algorithm, to withdraw the weakest and generate new and presumably

more adapted rules. The fitness function of this algorithm is usually a reward

signal, perceived from the environment. A great difficulty in the instanciation

of a LCS is to adequately split the reward between the different rules. This dif-

ficulty does not exist in ESCHER, because of the autonomy of Context Agents.650

They evaluate their adequacy themselves, and adjust themsevles if needed. On

certain aspects, the notion of critical levels may be assimilated to the reward

signal, as it enables to evaluate the adequacy of the rules.

By self-adjusting, Context Agents suggest actions that are more and more

adequate, with a more and more adequate timing, along with more and more655

reliable forecasts. Thus, the learning process feeds the control process.

4.6. Settings

For ESCHER to be easy to instantiate to a particular system, the number

of parameters has to be as low as possible, and setting them should not require

the use of elaborate calibration methods.660

The only knowledge about the controlled system that ESCHER needs is

quite simple:

• the number of controlled variables, and their references;

• the number of observed variables, and their references.

It is possible to give the lower and higher bound for each variable. ESCHER665

works without this information, but it can be of use for the criticality func-

tions. Anyway, this is basic knowledge about the controlled system, it is not an

obstacle.

The only difficulty in the instanciation ESCHER is the definition of the

criticality functions. Controller Agents focus on the most critical Criterion670

Agent. This means that the compromise between several criteria is expressed

through the definition of the criticality functions. For instance, in an absurd
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Parameters Significance

Number of controlled variable Important

Number of observed variables Important

Variables references Important

Criticality functions Important

Variation ranges Optional

Maximal size of an action Incidental

Minimal size of a validity range Incidental

Minimal step of an AVT Incidental

Coefficients of an AVT Incidental

Table 1: Parameters of ESCHER and their significance

case, if we want to maximize and minimze the same variable, ESCHER will

stabilize on the value where the two criticality functions meet. This knowledge

concerns not only the controlled system, but also the objectives of the user.675

Finally, some other parameters are secondary. They have a very limited

impact on the overall performance of the system, they do not require to be

specifically set each time, their default values work fine. It is, for instance, the

minimal size of validity ranges (that triggers NCS 7), the maximal size of an

action (to prevent ESCHER to perform brutal actions, for safety reasons), or the680

internal parameters of AVTs. The strong and quick adaptiveness of the agents

reduces the impact of these parameters. Table 1 shows all the parameters of

ESCHER and their significance.

5. Experiments: Real-Time Control of Combustion Engines

The first experiments presented in this section have been conducted on au-685

tomatically generated synthetic black boxes. Then, experiments on a real com-

bustion engine are shown. The implementation of ESCHER used for these

experiments is a prototype written in Java 1.7 using Eclipse and a component-

based multi-agent architecture generator called Make Agent Yourself [30]. It
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runs on a laptop with an Intel i7 2.67GHhz CPU and 4GB of RAM. The du-690

ration of a lifecycle of ESCHER (i.e. a lifecycle of each of its agents) depends

mainly on the number of agents. It is approximately 20 ms with 10 agents, and

500 ms with 800 agents. This is something that should be improved by code

optmization, but this is not the immediate concern for ESCHER. Here the goal

is to show that the agents are indeed able to learn how to control several inputs695

of an unknown system, regarding several criteria.

5.1. Criticality Functions

The function1 used in our experiments to compute critical levels is defined

over R as follows (equation 10) :

f(x) =



100 if x ≤ 0

γ (x−η)2
2η + γ(x− η) + δ if 0 < x ≤ η

−γ (x−η)2
2(ε−η) + γ(x− η) + δ if η < x ≤ ε

0 if ε < x ≤ sup− ε

−γ (sup−x−η)2
2(ε−η) + γ(sup− x− η) + δ if sup− ε < x ≤ sup− η

γ (sup−x−η)2
2η + γ(sup− x− η) + δ if sup− η < x ≤ sup

100 if sup < x

(10)

with

γ = −2100
ε

and

δ = −γ (ε− η)
2

Parameters sup, ε et η are defined by the user. The curve of this function is

symmetrical with respect to the center of [0; sup], it decreases on [0; ε], and

increases on [sup − ε; sup]. Parameter η defines the inflection point, sup acts700

as the upper bound of the function, above this value the critical level is always

100, and ε defines the interval [ε; sup− ε] where the critical level is always zero.

1Function whose formula was proposed by our colleague Sophie Jan, at the Toulouse In-

stitute of Mathematics
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In our implementation, it is possible to shift the function so the slopes happen

in an arbitrary interval instead of [0; sup]. It is also possible to make the function

asymmetrical by defining different ε and η for each half of the interval. For705

instance, by setting ε = 0 for the left half only, we obtain a curve similar to the

threshold one from figure 2.

It is worth remembering that each Criterion Agent has its own function set

differently. It is up to an expert of the controlled system domain to set the pa-

rameter of each criticality function. This is how the balance between all criteria710

is expressed to ESCHER, as it always try to lower the most critical criterion

before the others. However, our prototype has a simplified procedure regarding

the experiments. The user does not have to directly manipulate equation 10,

she or he only needs to select each critical variable and indicate whether the

function he or she wants is a threshold, a setpoint, a minimization or a maxi-715

mization. After specifying the threshold value or the setpoint value, ε and η are

generated automatically.

5.2. Experiments on Synthetic Black Boxes

The use of a black box generation tool [31] enabled us to test ESCHER over

50 cases of various complexity, with up to dozens of inputs and outputs. We720

present here two very simple cases to provide a better understanding on how

ESCHER reaches a compromise between several criteria, and how it is robust to

perturbations. In these experiments, a cycle corresponds to a lifecycle of each

agent followed by a simulation step of the black box.

5.2.1. Optimizing Two Criteria725

In this experiment, the black box has one input (I1) and two outputs (O1

and O2) varying from zero to 100. The setpoint on both outputs is 50. There

are two Criterion Agents, one for each output, each with the same criticality

function. Hence, both criteria have the same weight. However, this setpoint

is not reachable on both output at the same time, there is no value for the730
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input that put both output at 50. ESCHER has to find a compromise, i.e. to

minimize the highest critical level.

Figure 4: Optimization of two Criteria

Figure 4 shows the variations of the input and outputs of the controlled

black box, of the number of Context Agents in the system, and of the critical

levels. The input is initialized to 1.1, which sets O1 to 21.8 and O2 to 1.8.735

O2 is further from the setpoint than O1, its critical level is therefore higher.

ESCHER has no preliminary knowledge on the black box. Its action at the first

step is a mistake, ESCHER slightly increase the input which provokes a small

increase of both critical levels. A Context Agent for this action is created. The

following step, ESCHER corrects this mistake, and find the action which push740

the outputs towards the setpoint. A second Context Agent is created, which

action is kept until the highest critical level stops decreasing.

The critical level of O1 reaches 0 at lifecycle 76. However, the critical level of
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O2 is then at 26.1, and still decreasing. The action is continued, since the highest

critical level is decreasing, even though the other critical level is increasing.745

At lifecycle 96, critical level of O1 becomes higher than critical level of O2. In

consequence, ESCHER modifies its action, and critical levels cross again. A serie

of oscillations follows, during which 3 new Context Agents are created. Finally,

the value of the input is stabilized, slightly oscillating around 3. O1 oscillates

around 60 and O2 around 40. Both critical levels oscillate around 5. ESCHER750

has reached the best compromise (according to the criticality functions), since

the highest critical level is the lowest possible.

This experiment shows how a Controller Agent is able to deal with an input

that control several outputs with antinomic criteria. Different criticality func-

tions would have lead to a different compromise. For instance, one can prioritize755

one output over the other by making a criticality function always greater than

the other.

5.2.2. Robustness

This experiment shows how ESCHER reacts to perturbations in its environ-

ment. Here, ESCHER controls two of the three inputs (I1 and I2) of a black760

box. The third input (I3) is manually controlled. These three inputs have an

influence on the same output (O1), on which a setpoint criterion is applied.

First, we let ESCHER make O1 meet the setpoint by modifying I1 and I2.

Then, we manually change the value of I3, provoking a perturbation on O1,

which abruptly go away from the setpoint. ESCHER must adapt itself to this765

modification by finding new values for I1 and I2.

Figure 5 shows the variations of the input and outputs of the black box,

along with the number of Context Agents and the critical level of the setpoint

criterion. Inputs are initialized to 1, which sets the output to 68. The setpoint

is 50. ESCHER reaches the setpoint in less than 100 lifecycles by increasing I2770

only.

At lifecycle 160, I3 is manually set to 50. This makes O1 decrease, jumping

out of the setpoint, resulting in a peak of crtitical level, which rises from 0 to 12.
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Figure 5: Robustness to Perturbations at Runtime

This is resorbed by ESCHER, which decreases I2 until the setpoint is reached

again.775

I3 is once again modified at lifecycle 220, from 50 to 100. This provokes a

huge increase of the output, therefore a rise of critical level (from 0 to 72). Once

again, ESCHER self-adapts to this perturbation. First, I1 is increased, then I2.

The critical level is brought back to 0 at lifecycle 350, while new Context Agents

have been created. Two other perturbations are later performed. Each time,780

ESCHER is able to bring back the output on the setpoint.

This experiment shows that ESCHER is able to react to perturbations on

the controlled system. It self-adapts to changes to maintain an adequate control.

Here, each perturbation is big enough to provoke the creation of new Context

Agents.785
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5.3. Experiments in Real Conditions

The results presented in this section have been obtained during tests driven

on a 125cc monocylinder fuel engine. The engine was instrumented so ESCHER

has access to temperatures, pressures, and others, via the Engine Control Unit

(ECU) and a gas analyzer.790

The link between the engine and the ECU is assured thanks to various

specific instruments. A Controller Area Network (CAN) bus enables the com-

munication of external systems with the ECU. CAN buses are widely used in

the automotive industry. A computer software called ControlDesk enables the

reading on the ECU (in particular of the variables measured by the sensors),795

the computation of values from read variables, and the modifications of parame-

ters (such as the ignition advance). ESCHER is connected to ControlDesk via a

specific communication protocol, MCD-3 (stands for Measurement, Calibration,

Diagnostics) over Ethernet, enabling our system to read and write values on the

ECU. Finally, a gaz analyzer is plugged onto the engine exhaust. It measures800

gas concentration of various pollutants (carbon monoxide, for instance), and

sends data via a serial output (RS232/DB25) interfaced with the USB port of

the computer on which ESCHER runs. Figure 6 shows this set-up. For these

experiments, ESCHER had to be slowed down and wait at least 10 seconds

between each lifecycle in order to let the engine stabilize after changing its pa-805

rameters. For the second experiment, ESCHER had to wait 10 more seconds

between each lifecycle for the gas analyser to provide data.

5.3.1. Torque Optimization

In this experiment, the engine is put at 5000 rpm, with a load of 870 mbar

in the intake manifold. ESCHER controls the total injected fuel mass and the810

ignition advance. The only control criterion is to maximize the indicated mean

effective pressure (IMEP), which reflects the torque.

The injected fuel mass is measured in milligrams per shot (mg/shot), and the

ignition advance in crankshaft degrees (◦c), i.e. the position of the piston in the

cylinder when the combustion is triggered. IMEP is measured in bars. IMEP815
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Figure 6: Experimental Set-Up for the Tests on a Real Engine

is a very unstable variable, in particular with monocylinder engines. Working

at high rpm and high load, as it is the case in this experiment, reduces the

instability.

The criticality function is strictly decreasing (since we want to maximize

IMEP). We do not know a priori what is the maximal reachable IMEP, therefore820

we can’t set the criticality function in a way that it returns 0 when the maximal

PMI is reached. Thus, we do not expect the critical level to be zero at the end

of the test, but we do expect it to be lower at the end than at the start. This

is true for every criticality function used with the real engine.

Figure 7 shows the variations of the controlled inputs, the optimized output,825

the number of Context Agents and the critical level. At the start, the injected

fuel mass is low (7 mg/shot) regarding the current operating point. The engine is

on the verge of stalling. Of course, ESCHER which doesn’t have any knowledge

about the engine, is not aware of this fact. Its first action is a mistake: ESCHER

decreases both parameters, which leads to a drop of IMEP (and a rise of critical830

level).

ESCHER quickly finds a way to make the critical level decrease, by increasing

first the injected fuel mass, then the ignition advance. IMEP finally reaches its

maximum (about 9 bars), the critical level stops decreasing. ESCHER stabilizes

itself at 11.50 mg/shot of injected fuel, with a 2424◦c ignition advance. The835

decrease of these inputs at lifecycle 24 is explained by nose on the IMEP. But
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Figure 7: IMEP Optimization while Controlling Two Parameters

the system quickly corrects itself.

ESCHER managed to improve the IMEP by 3 bar in 9 lifecycles (about

90 seconds), reaching the maximal IMEP possible for the considered operating

point. Obtaining the same result takes a skilled engineer, used to this particular840

engine, around 20 minutes with usual methods.

5.3.2. Multi-Objective Optimization

For this test, the engine is put in another operating point (2500 rpm, 750

mbar). ESCHER controls the injected fuel mass the ignition advance, but also

the start of injection (SOI). This new parameter is the timing of the injection845

relatively to the position of the piston, it is measured in crankshaft degrees.

There are criteria on four outputs:

• IMEP must be maximized ;
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Figure 8: Inputs and Critical Levels during a Multi-Objective Optimization

• fuel consumption, measured in g/kWh, must be minimized ;

• hydrocarbons (HC) emission must be under 500 ppm (parts par million) ;850

• carbon monoxide concentration (CO) must be under 3%.

The last three criteria are contradictory with the first one. Indeed, the most

efficient way to improve IMEP is to inject more fuel. However, this also increase

fuel consumption and pollutants emissions. We need to adjust ignition advance

and SOI to extract more power from the combustion. This is what ESCHER855

has to learn.

Figure 8 shows the variations of the controlled parameters and the critical

levels, while figure 9 shows the variations of the outputs. At the beginning,

the highest critical levels is that of fuel consumption. Thus, ESCHER seeks
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Figure 9: Engine Outputs during a Multi-Objective Optimization

to decrease the fuel consumption critical level in priority. The system manages860

to do so during the first 20 lifecycles, in particular by increasing the ignition

advance from 10 to 26◦c and by decreasing the SOI from -150 à -400◦c, while

the fuel injection oscillates between 6 and 7 mg/shot.

At lifecycle 10, IMEP maximization becomes the most critical criterion,

however, its critical level is decreasing, so the same actions are continued. At865

lifecycle 20, the CO threshold is crossed, its critical level rises. ESCHER ex-

plores new actions to solve this problem. It continues to decrease SOI but start

to decrease ignition advance. This lead to a peak of consumption and a drop

of IMEP between lifecycles 45 and 50, along with small excesses of hydrocar-

bons. Finally, after some oscillations, ESCHER manages to put the pollutants870

under their respective thresholds, while maintaining a high IMEP and a low
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consumption.

At the end of the test, IMEP is around 8 bar (2 bar higher than the begin-

ing), while fuel consumption is around 275 g/kWh (165 g/kWh less than the

initial value). Pollutants emissions are higher than their initial values, but they875

meet their threshold. ESCHER has successfully completed a standard engine

optimization (i.e. optimizing torque and consumption while respecting pollu-

tion thresholds) without having any prior knowledge about engines. This test

lasted 123 lifecycles, around 41 minutes (ESCHER has to wait for the gaz ana-

lyzer). This is about twice as fast than a human expert with usual methods for880

a similar end result.

6. Conclusion and Perspectives

This article presented ESCHER, an system that illustrates the contributions

of the AMAS approach to the field of control systems and calibration. This ar-

ticle focused on the full presentation of the system, and showed results obtained885

both with unrelated black-box simulations and real engines. The goal with

the experiments on black-boxes was to illustrate how ESCHER works on basic

cases. Experiments on the real engine show its applicability in real conditions

and its robustness to noisy data. Overall, the automatic calibration performed

by ESCHER is faster than methods used in the industry for a similar resutlt.890

However these experiments highlight a limitation of ESCHER. We had to make

it wait between its lifecycles for the engine to stabilize and for the gaz analyzer

to provide data. This is due to its inability to correlate actions and effects

if the effects become sensible too long after the action. Further papers will

present comparisons with other learning methods, detailing the advantages and895

limitations of each.

The AMAS approach breaks with the traditional top-down design of artificial

systems. It focuses on the local behavior of agents, leaving them the task of

controlling their own organization. An adequate global function emerges from

this local self-organization process. We hope this is the first step towards a fully900
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self-reconfigurable ECU.

Other AMASs have tackled the problem of learning and control with similar

Context Agents, for instance with model generation [32] and ambient robotics

[33]. Context Agents are being generalized and standardized to become a pat-

tern for context learning in a multi-agent system [34].905

AMASs are a young technology compared to the majority of AI methods used

in intelligent control, such as artificial neural networks or genetic algorithms.

Our future work must focus on the formalization of the approach to enable a

priori proofs of AMAS properties. This is a work in progress, which first steps

have been made with Event-B [35] and continuous approximation [36].910
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