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IRIT, Université de Toulouse, Toulouse, France
name.surname@irit.fr

Keywords: ambient systems : multi-agent systems : lifelong learning : self-adaptive systems : self-organization

Abstract: Sensors and actuators are progressively invading our everyday life, as well as industrial processes. They
form complex and pervasive systems usually called ”ambient systems” or ”cyber-physical systems”. These
systems are supposed to efficiently perform various and dynamic tasks in an ever-changing environment. They
need to be able to learn and to self-adapt throughout their life, because designers cannot specify a priori all
the interactions and situations they will face. These are strong requirements that push the need for lifelong
machine learning, where devices can learn models and behaviors and transfer them to perform other tasks.
This article presents a multi-agent approach for lifelong machine learning.
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1 INTRODUCTION

The rapid increasing of the computational capabil-
ities of electronic components and the drastic reduc-
tion of their costs has allowed to populate our envi-
ronments with thousands of smart devices, inducing
a revolution in the way we interact with a more and
more numerical world. The emergence of a socio-
technical world where technology is a key component
of our environment impacts many aspects of our ex-
istence, changing the way we live, work and interact.
Applications of these Ambient Systems are wide and
various, covering a spectrum from industrial appli-
cations to end-user satisfaction in a domotic context
(Nigon et al., 2016a). The will to improve our man-
ufacturing processes through the Industry 4.0 topic
(Jazdi, 2014), or the emergence of a Green Economy
(Rifkin, 2016) are good illustrations of the usage of
these cyber-physical systems.

A key feature of these systems is their pervasiv-
ity: they are composed of a huge variety of elec-
tronic components, with sensing and actuating capac-
ities, that interact with each other, generating more
and more complex data all in order to control dy-
namic and inter-disciplinary processes. They achieve
their task throughout their life without any interrup-
tion. The complexity of these systems, increased by
the heterogeneity of their components and the diffi-

culty to specify a priori all the interactions that may
occur, induces the need for lifelong learning features.

In this paper, we address the lifelong learning
problem in ambient systems as a problem of self-
organization of the different components. Giving
each component the ability to self-adapt to both the
task and the environment is the key toward a lifelong
learning process. First, we argue that work on lifelong
machine learning and self-organization shares similar
objectives. Then, we propose a generic framework,
based on our previous and current works on Adap-
tive Multi-Agent Systems, that enable lifelong learn-
ing through interactions in a set of distributed agents.
We then study the relevance of our approach in a sim-
ulation of a robotic toy. Finally, we conclude with the
challenges and perspectives opened by this work.

2 AMBIENT SYSTEMS,
LIFELONG MACHINE
LEARNING AND
SELF-ORGANIZATION

In this section, we introduce the basics of lifelong
machine learning and self-organization in order to
highlight the similar problematic addressed by these
two domains.



2.1 Machine Learning and Ambient
Systems

Machine learning is an increasingly trending topic in
the industry, becoming an indispensable tool to design
artificial systems. Designers use machine learning to
face the inability to specify a priori all the interactions
that could occur or to handle the complexity of a par-
ticular task. The idea of designing learning machines
lies at the very heart of artificial intelligence and is
studied since the very beginning of computer science.
(Mitchell, 2006) defines the field of machine learning
as the science seeking to answer the questions ”how
can we build computer systems that automatically im-
prove with experience?” and ”what are the fundamen-
tal laws that governs all learning process?”. Accord-
ing to (Mitchell, 2006), a machine is said to learn with
respect to a particular task T , performance metric P,
and type of experience E, if the system reliability im-
proves its performance P at task T , following experi-
ence E. The field of Machine Learning is traditionally
classified in three categories (Russell et al., 2003), de-
pending on how the experience E is performed:

• Supervised Learning which infers a function
from labelled data provided by an oracle.

• Unsupervised Learning which looks for hidden
structures in unlabelled data provided by an exter-
nal entity.

• Reinforcement Learning which learns through
the interaction between a learner and its environ-
ment to maximize a utility function.

While the difference is on the way the experience is
gathered, all these learning algorithms intend to learn
a particular task. The learning system is then spe-
cialised through its experience to increase its perfor-
mance. The notion of task in the AI community is
highly discussed, and in the absence of a common
definition or test framework, it is difficult to truly
compare those different approaches (Thorisson et al.,
2016).
Learning in an ambient system differs in the way that
the task to learn is a priori unknown and dynamic.
These systems must handle unanticipated tasks whose
specifics cannot be known beforehand. Indeed, these
systems are characterized by: their non-linearity (the
behaviour of such systems is not defined by simple
mathematical rules), the high number of entities that
compose it, the high number of interactions between
these entities, their unpredictability. In addition, am-
bient systems are generally used in conjunction with
the presence of human users. Those human users have
varied and multiple needs, which implies to deal at
runtime with various tasks. Moreover, the devices of

ambient systems are made to last several years, dur-
ing which their usage may change. We have no way
to know to what end they will be used five or ten
years from now. Thus, ambient systems require that
machine learning algorithms handle the dynamics of
their environments and never stop learning. On the
next sections, we introduce lifelong machine learning
and draw a parallel with self-organization.

2.2 Lifelong Learning Machine:
Definitions and Objectives

Definition: Lifelong Machine Learning, or LML,
considers systems that can learn many tasks over a
lifetime from one or more domains. They efficiently
and effectively retain the knowledge they have learned
and use that knowledge to more efficiently and effec-
tively learn new tasks. (Silver et al., 2013)
The idea of design artificial systems with Lifelong
Learning capacities is not new (Thrun and Mitchell,
1995), but their is a upsurge work probably helped by
the recent advances in neural networks (Pentina and
Lampert, 2015).
Artificial systems have to face more and more dy-
namic and various environments. The impact of those
quick evolutions impose severe limitations on design-
ers capacities to a priori determine all the events that
can occur in the environment. While traditional ma-
chine learning focuses on optimising a system perfor-
mance to achieve a particular task, LML proposes to
deal with various tasks in a variety of environment.
Researches on LML are then multidisciplinary, asso-
ciating a wide range of researchers from computer
sciences to cognitive sciences. Learning is considered
as an ontogenesis process from which more and more
complex structures are built through experience and
LML addresses the problematic of reusing previously
learned knowledge (Zhang, 2014).
(Thrun and Mitchell, 1995) categorise LML ap-
proaches in two categories, depending on the hypoth-
esis put on the environment. The first one considers
learners that have to learn various tasks in similar en-
vironments. Those algorithms build an action model
which learns the impact of the learner’s action on the
environment. As the environment is the same, this
model is independent of the task to perform and can
be used in various tasks. The second one considers
that the same learner as to face multiple environments.
This approach intends to model invariant features that
are observed about the learner on its environment. In
both categories, the objective is to build through expe-
rience a model from the different experiences and to
transfer or reuse previously learned knowledge in or-
der to speed up the learning process when the learner



has to learn a new task.

2.3 Machine Learning and
Self-Organization

The behavior and the interactions of the components
of a system define the function of the system. When
the components change their behavior or their interac-
tions, the function of the system is necessarily mod-
ified. If these changes are only controlled by the
components themselves, the system is said to be self-
organizing. The concept of self-organization is stud-
ied in various domains, from biology to computer sci-
ence. The following definition is given by (Serugendo
et al., 2011).
Definition: Self-organization is the process with
which a system changes its structure without any ex-
ternal control to respond to changes in its operating
conditions and its environment.
In other words, self-organization enables a system
to change its internal behavior in order to reach and
maintain efficient interactions with its environment.
This is very close to machine learning, where a soft-
ware system tries to improve its function by adjusting
itself regarding past experiences. Self-organization is
actually a fine way to achieve machine learning. It
is particularly efficient when a system has many het-
erogeneous components with various degree of auton-
omy, such as an ambient system and its many con-
nected devices. In this case, self-organization im-
plies the distribution of control and helps to tackle
complexity by focusing on the local problems of the
components rather than the global task of the system.
This is why designing self-organizing systems is a key
challenge to tackle complexity in ambient systems.
Multi-agent systems are particularly suitable
paradigm to design and implement self-organizing
systems. The next section presents our self-
organizing multi-agent pattern for machine learning.

3 LIFELONG MACHINE
LEARNING WITH ADAPTIVE
MULTI-AGENT SYSTEMS

3.1 Adaptive Multi-Agent Systems

The Adaptive Multi-Agent Systems (AMAS) ap-
proach aims at solving problems in dynamic non-
linear environments by a bottom-up design of coop-
erative agents, where cooperation is the engine of the
self-organisation process (Georgé et al., 2011). Over
the years, the approach has been applied to designed

and developed various self-adaptive multi-agent sys-
tems to tackle real-world complex problems, such as
robot control (Verstaevel et al., 2016) or heat engine
optimization (Boes et al., 2014). A recurrent key fea-
ture of these systems is their ability to continuously
learn how to handle the context they are plunged in,
in other words to map the current state of their per-
ceptions to actions and effects. In these applications,
a set of distributed agents locally learns and exploits
a model of an agent behavior from the interactions
between the agent and its environment. On the next
section, we present the Self-Adaptive Context Pattern
(Boes et al., 2015), our proposal to design agents with
lifelong learning capacities.

3.2 The Self-Adaptive Context Learning
Pattern

The Self-Adaptive Context Learning Pattern is a re-
current pattern, designed with the AMAS approach,
that we have been using to solve complex problems
based on the autonomous observation by an agent of
the impacts of its own activity on the environment
(Nigon et al., 2016b). The pattern is composed of two
coupled entities:

• An Exploitation Mechanism, which function is to
perform actions over the environment. It is the
acting entity which has to decide and apply the
action to performed by a controlled system in the
current context. Its decision is based on its own
knowledge, including constraints from the appli-
cation domain, and additional information pro-
vided by the Adaptation Mechanism.

• An Adaptation Mechanism, which builds and
maintains a model describing the current context
of the environment and its possible evolutions.
This model is dynamically built by correlating the
activity of the Exploitation Mechanism to the ob-
servation of the environment.

The Adaptation Mechanism and the Exploitation
Mechanism are coupled entities and form a con-
trol system (Figure 1). The Adaptation Mechanism
perceives information from the environment (Arrow
3) and uses this information to provide information
about the current system context to the Exploitation
Mechanism. Thanks to those information and its own
internal knowledge, the Exploitation Mechanism de-
cides of the action to perform and applies it (Arrow
2). The Exploitation Mechanism provides a feed-
back to the Adaptation Mechanism about the ade-
quacy of the information performed (Arrow 4). The
adequacy is evaluated by the observation of the envi-
ronment by the Exploitation Mechanism. This pattern



Figure 1: The Self-Adaptive Context Learning Pattern: view of one agent and its interaction with the environment (Boes et al.,
2015)

is highly generic and task-independent. The Adap-
tation Mechanism models information that are useful
for the Exploitation Mechanism, which exploits this
information to decide of the action to performed. By
its actions, the Exploitation Mechanism modifies the
environment, enabling the Adaptation Mechanism to
update its knowledge about the environment and to
provide new information about the current context.
This loop enables the system to continuously acquire
knowledge about its environment through its own ex-
perience. Through this loop, the Adaptation Mech-
anism models information about the interaction be-
tween the Exploitation Mechanism and its environ-
ment. This information is autonomously provided to
the Exploitation Mechanism which uses it to improve
its behavior.
The pattern results of an abstraction of various appli-
cation of the AMAS approach to different problems.
Then, it is independent of the implementation of the
Adaptation Mechanism and the Exploitation Mecha-
nism. It only focuses on how those two entities has to
interact in order to learn over time, throughout their
activity. In this pattern, the learning is made by the
Adaptation Mechanism, whereas the acting is made
by the Exploitation Mechanism. However, to be truly
functional, the SACL pattern imposes that the Adap-
tation Mechanism continuously learns from the inter-
actions in a Lifelong way.

3.3 Solving problems with SACL

The pattern has been applied to various problems
where learning is a way toward self-organisation

Figure 2: The Self-Adaptive Context Learning Pattern ap-
plied to Supervised Learning problems.

(Boes et al., 2015). In each of those problems, the
recurrent key feature is to learn a model of the in-
teractions between the agent and its environment by
extracting the context in which those actions are per-
formed and associating information about this con-
text in order to lately use this information to behave
well. To illustrate this recurrent key feature, we show
how the pattern is used to design Supervised Learn-
ing agents and Reinforcement Learning agents, and
we point out similarities of design and differences.

3.3.1 Supervised Learning Agent

A supervised learning algorithm infers a function
from labelled data provided by an oracle. Supervised
learning algorithms perform either a classification or
a regression, depending on either the output is dis-
crete or continuous. Traditionally, Supervised Learn-



ing algorithms differentiate the learning phase, where
labelled situation are provided by the oracle, with the
exploitation phase, where new situations have to be
labelled by the agent itself.
With the SACL pattern, those two phases are not sep-
arated. The supervised learning process is performed
on-line. In order to do so, the oracle is considered as
an autonomous entity which takes part of the environ-
ment which may provide information to the Exploita-
tion Mechanism. The function of the SACL pattern
is then to mimic the behavior of this external entity.
Thus, the Exploitation Mechanism observes the be-
havior of the oracle, and when the oracle provides
a label describing a situation, it compares this label
given by the oracle to the label proposed by the Adap-
tation Mechanism. Then, it generates a feedback to-
ward the Adaptation Mechanism to inform if either
or not the current situation is correctly mapped by
the Adaptation Mechanism. The Adaptation Mech-
anism uses this feedback and the observation of the
data that describes the current states of the environ-
ment in order to adjust its model. Whenever an oracle
provides information about the current situation, the
output of the SACL agent is the label of the oracle.
On the other hand, when the oracle does not give in-
formation about the current situation, the Exploitation
Mechanism exploits the information provided by the
Adaptation Mechanism to label the current situation.
The figure 2 summarizes the usage of the SACL pat-
tern for the design of Supervised Learning agents.
Thus, when performing supervised learning with
SACL, the Adaptation Mechanism has to associate
the adequate label to the current state of the environ-
ment, in other words, to extract the context of each
label in order to be able to correctly propose the ad-
equate label to its Exploitation Mechanism when the
oracle does not provide this label.
This form of learning with the SACL pattern has
been applied to the problematic of learning user pref-
erences in ambient systems (Guivarch et al., 2012)
and learning from a set of demonstrations performed
by a human operator in ambient robotic applications
(Verstaevel, 2016). In those applications, examples
are provided by the oracle throughout the activity of
the system, without restarting or clearing the learning
process.

3.3.2 Reinforcement Learning Agent

Reinforcement Learning algorithms learn through
their own experience to maximize a utility function.
Basically, each action is associated with a numerical
reward provided by the environment which evaluates
the utility of the performance of this particular action
in the current context. Learning a model of the con-

Figure 3: The Self-Adaptive Context Learning Pattern ap-
plied to Reinforcement Learning problems.

sequence of the performance of an action to the util-
ity value allows the agent to select actions in order to
maximize its reward.
The figure 3 illustrates how we used the SACL pat-
tern to design a Reinforcement Learning agent. Here,
the Exploitation Mechanism performs actions on the
environment and receives a feedback about the utility
of this action. The action and utility value are pro-
vided to the Adaptation Mechanism which associates
the current state of the environment and the perfor-
mance of the action the utility value. The Adapta-
tion Mechanism is used to build a model of the conse-
quences of performing a particular action under a cer-
tain context. This model is then used to provide to the
Exploitation Mechanism information about the con-
sequences of performing a set of actiosn on the cur-
rent context. Using this knowledge, the Exploitation
Mechanism can select the action which maximizes its
reward.
Similarly to the Supervised Learning agent, the Adap-
tation Mechanism observes both the current state of
the environment and the activity of the Exploitation
Mechanism. It dynamically builds a model of the in-
teraction between the Exploitation Mechanism and its
environment. This information is then used in order
to improve the Exploitation Mechanism behavior.
Reinforcement Learning agents with SACL have been
used for the optimization of heat-engines control
(Boes et al., 2014).

3.4 AMOEBA: Agnostic MOdEl
Builder by self-Adaptation

Building a model of the interactions that occurs be-
tween the Exploitation Mechanism and the environ-
ment is the core of the SACL pattern and its learning
process. The Adaptation Mechanism has to dynami-
cally model these interactions. In order to do so, we



designed a generic Multi-Agent system based on the
AMAS approach, AMOEBA (for Agnostic MOdEl
Builder by self-Adaptation), for building model of
complex Systems. In AMOEBA, a set of Context
agents is dynamically created to discretize the envi-
ronmental state into events. To design this system, we
made some hypotheses about the environment:

• The observed world is deterministic: the same
causes produce the same effects.

• The environment perceived by AMOEBA is not
the world as a whole. AMOEBA therefore has
only an incomplete view of the world.

• Perceived information may be inaccurate.

• The collected data are orderable values (real, inte-
ger ...).

• The dynamics of evolution of the observed world
variables are potentially very different from one
to another.

In this section, we present the structure and behaviour
of Context agents and the different mechanisms that
enable Context agents to collectively build a model of
the interactions. In a didactic way, we consider that
the environmental state is observed through a set of
sensors described by a vector E ∈ Rn. However, the
model is functional with any orderable value. Basi-
cally, each component ei ∈ E describes the value of a
particular data.

3.4.1 Context Agents: Definitions

Context Agents are the core of learning in AMOEBA
Context Agent may be assimilated to a unit of knowl-
edge which locally describes the evolution of a partic-
ular variable of the environment. At start, the system
is empty of Context agents as it does not possess an
a priori knowledge about the environment. Context
agents are created at runtime to model new interac-
tions. They are composed by a set of validity ranges
and a local model.

Definition: A Context Agent c ∈ C is composed
of a set of validity range V and a local model L.
Each validity range v is an interval associated to a par-
ticular value ei ∈E of the environmental state E. Each
ei is modelled by a validity range within each Context
Agent. The intervals are defined by a minimal and a
maximal float value.

Definition: A validity range vi ∈ V is associated
to any value ei ∈ E. A particular v is an interval
[vmin,vmax]⊂ [emin,emax].
A validity range enables to discretize the environmen-
tal state into two types of events: valid or invalid.
Those events are determined by comparing the cur-
rent value of the variable ei and the range of v.

Definition: A validity range vi ∈V is said valid if
and only if ei ∈ vi and invalid otherwise.
In the same way, a Context Agent is a discretization
of the environmental state E into the two same type
of events.

Definition: A Context Agent c ∈C is said valid if
and only if ∀vi ∈V ,ei ∈ [vmin,vmax] and invalid other-
wise.
The local model L is a linear regression of the envi-
ronmental state L : E → R. Each Context Agent dis-
poses of its own local model and thus, of its own lin-
ear regression.
The function of a Context Agent is dual:

• To send the value computed by its local model to
the Exploitation Mechanism whenever the Con-
text Agent is valid and,

• Thanks to the feedbacks from the Exploitation
Mechanism, to adjust both its local model and its
validity ranges so that the information sent to the
Exploitation Mechanism is useful for its activity.

3.4.2 Context Agents: Creation and
Self-Organisation

At start, AMOEBA does not contain any Context
Agent. Indeed, all the Context Agents are going
to be created and will build themselves using self-
organization mechanisms. These changes / creations
of agents take place when the agents are trouble to
perform their function efficiently. The main adapta-
tions performed by a Context Agent are :

• Changing its validity range. Indeed, when the re-
sults obtained by the local model are not satisfac-
tory for the Exploitation Mechanism, it may be
preferable for the agent to no longer be active in
the current situation. To do this, it reduces its va-
lidity ranges. Conversely, if it finds that its pro-
posal would have been relevant in a close situa-
tion, the agent may broaden its ranges of validity
to include the situation in question (figure 5).

• Changing its local model. When the results ob-
tained by the local model are not satisfactory for
the Exploitation Mechanism, an other way to im-
prove the results of the Context Agent is to change
the local model. This consists in adding to the
linear regression of the local model the point rep-
resented by the current situation. This change is
smoother than the previous one, and will therefore
be preferred by the Context Agent when the error
is small.

• Destroy itself. When the validity ranges of the
Context Agent are too small, the agent could con-



sider that it has no chances to be useful again. So,
it destroys itself in order to save resources.

Another mechanism is implemented to complement
those mentioned earlier. When no proposal is made
by the Context Agents, or when all their propositions
are false, a new Context Agent is created to carry
the information when a similar situation occurs again.
This is how new agents are added to the system.

3.4.3 Synthesis

AMOEBA is a generic model builder to model the
evolution of a particular variable. It based on the
Adaptive Multi-Agent approach. It’s key feature is to
be dynamically populated by a set of Context Agents
which evolves dynamically to maintain an up-to-date
model of the variables it observes.
The reader may see that Context Agents are simi-
lar to neurons in Artificial Neural Networks. Artifi-
cial Neural Networks are composed of interconnected
neurons, where each neuron is a small computational
unit with inputs, outputs, an internal state and param-
eters. One could see Context Agents as ”advanced”
neurons, and the architecture of AMOEBA, where
messages navigate from the environment to the differ-
ent Context Agents, as a form of multilayer percep-
tron. However, the information within AMOEBA is
not feed-forward (contrary to neural networks). Thus,
the main difference between AMOEBA and Artificial
Networks is the organization of the interaction be-
tween the entities. With artificial Neural Network,
the topology of the network has to be fixed a pri-
ori in regards with the task to learn whereas within
AMOEBA, agents self-organize and the topology (the
number of agents and the way they interact) evolves
dynamically through experience.

4 COMBINING SUPERVISED
LEARNING AND
REINFORCEMENT
LEARNING: AN EXPERIMENT
WITH A CHILDREN’S
ROBOTIC TOY

We propose to study the usage of SACL in a Lifelong
reinforcement learning problem. We put ourselves in
the context of child entertainment with a robotic toy.
Firstly, we discuss of the motivations for this experi-
ment. Then, we present the experimental process and
the result we obtained. At last, we conclude on some
perspectives highlighted by this experiment.

Figure 4: Representation of the different adaptation mech-
anisms of the Context Agents in two dimensions. Each di-
mension represents the values that can be taken by a toy
sensor, and the size of the validity range determines the size
of the rectangle along this dimension

4.1 Motivations

Robotic toys tend to be more democratised and the
scientific community is working on their usage as
an educational and therapeutic tool (Billard, 2003).
Robins and Dautenhahn (Robins and Dautenhahn,
2007) have especially shown that their use encourages
the interactions among autistic children. But as each
human is different, the social skills needed to main-
tain the attention in the human/toy interaction requires
the toys to be able to self-adapt to anybody (Huang,
2010).
To this extent, an interesting approach is the Imitation
Learning (Billard, 2003) (Robins and Dautenhahn,
2007). Imitation Learning is a form of Learning from
Demonstration, a paradigm mainly studied in robotics
allowing a system to acquire new behaviors from the
observation of human activity (Argall et al., 2009).
It is inspired by the natural tendency in some ani-
mal species and human to learn from the observation
of their congeners. Imitation has a major advantage:
it is a natural step for the child development and a
medium for social interactions (Piaget, 1962). To im-
itate the child then seems to be a good way to initiate
and maintain the interactions. However the imitation
poses a correspondence problem between what is ob-



Figure 5: A bird’s eye view of the simulation. A robotic ball is immersed in an arena composed of 3 coloured blocks. The
contact between the toy and a block induces a laugh which is interpreted as a reward function. The long term objective is to
maximize laugh production.

served (the object to imitate) and what can be done by
the imitating entity (Nehaniv and Dautenhahn, 2002).
Imitation also imposes the existence of a function al-
lowing to associate the observed state of the world to
the corresponding state of the toy. Such a function is
complex and limits the interaction modalities.

Another form of Learning from Demonstration pro-
poses to use Reinforcement Learning algorithms com-
bined with Learning from Demonstration (Knox and
Stone, 2009). Reinforcement Learning algorithms
brings an interesting solution to the correspondence
problem by letting the learning system discovering
through its own experience what are the interesting in-
teractions. Then, the toy can explore its environment
and learn from its interactions with the child. How-
ever, in its original form, Reinforcement Learning al-
gorithms require the existence of a feedback function
which associates at each state of the world a reward
value. This function is often complex to specify be-
cause it requires to evaluate a priori the distance to
an objective. However, in our context, such objective
is a priori unknown and has to be discovered. On
the other hand, the Inverse Reinforcement Learning
approach (Argall et al., 2009) proposes to infer this
reward function from a set of reward examples. The
system is fed with a set of situations and the asso-
ciated rewards and the system infers a function that
models this reward. This function can then be used
to optimise a policy. But this solution implies that an
external entity is able to provide the required demon-
strations to learn the reward function which is, in the
case being considered, non trivial. To face this chal-

lenge, some approach proposes to use child’s laugh as
a reinforcement metric (Niewiadomski et al., 2013).

Robotic toys that learn to interact with child are good
illustration of the need for Lifelong Learning agents
as maintaining children attention requires a constant
adaptation to the child’s needs.

4.2 Description of the experiment

We study a simulation with the game physic engine
Unity3D (figure 5) in which a spherical robotic toy is
immersed in an arena. A child, also in the arena, ob-
serves the behavior of the robotic toy. The arena is
composed of 3 blocks of different colours. The con-
tact between the toy and a block produces a sound,
which depends on the texture of the block (determined
by its colour). We postulate that the sound produced
by the toy collision with an obstacle causes the child’s
laugh. The noise caused by the collision and the laugh
intensity depends on the nature of the collided obsta-
cle. Each object causes a different combination of
high or low noise and strong or weak laugh. The
laugh, observed through the volume intensity of the
sound it produces, is used as a utility function and the
objective is to maximize laugh over time.

The aim of the experiment is more to study how the
AMOEBA model is built and maintained up to date
during the experiment, than proposing a new rein-
forcement learning method.



4.3 Description of the SACL
architecture

The SACL pattern is instantiated to perform this ex-
perimentation (figure 6). The Adaptation Mechanism
is implemented with an instance of AMOEBA (as de-
scribed in part 3.4). The Exploitation Mechanism is a
simple controller, whose objective is to maximize the
volume intensity of the environment. In order to do
so, it has to decide of the (x,y) coordinates it wants to
reach. A simple control loop determines, in function
of the coordinate to reach, and the current state of the
toy, which is the action to apply. The toy is controlled
in velocity, which is then determined by the position
to reach. In order to behave well, the Exploitation
Mechanism has to receive from the AMOEBA in-
stance a set of reachable positions and their associated
volume. The AMOEBA instance will use as input the
current x and y positions of the sphere and the current
volume of the simulation, in order to build a model of
the actions to be taken in order to increase the volume
intensity according to the context. At each time step,
the Context Agents inside AMOEBA will propose a
set of coordinates (x,y) and their associated volume
intensity to the Exploitation Mechanism. In this ex-
periment, all the Context Agents inside AMOEBA are
sent to the Exploitation Mechanism.
The selection of the coordinates to reach by the Ex-
ploitation Mechanism is based on a combination of
three factors:

• The number of control loops elapsed since the last
selection of the Context Agent δ. Each time a
Context Agent is valid, the value δ is reset to 0.
The Exploitation Mechanism selects the Context
Agents which δ value is higher than 95% of the
maximum δ value.

• The volume intensity computed by the Context
Agent ω. The second selection process then se-
lects among the previous Context Agent set, the
Context Agents with a value ω higher than 95%
of the maximum D value.

• The reachability of the coordinates proposed by
the Context Agent D, which is here computed
with the Euclidean distance. At last, the Exploita-
tion Mechanism selects the Context Agent which
proposes to reach the closest position.

Once the coordinates are chosen, the control loop is
applied in order to reach those coordinates. The se-
lection is performed at each time step of the control
loop, allowing the Exploitation Mechanism to contin-
uously update its coordinate objectives. At the same
time the AMOEBA updates its model by observing
the evolution of the environment.

Figure 6: The Self-Adaptive Context Learning Pattern im-
plemented in order to control a robotic toy.

4.4 Experimentation and Results

The experiment is carried out in two phases of three
minutes. At first, an exploration phase allows the
robotic toy to discover its environment. This phase
is equivalent to a supervised learning approach where
examples are provided to the learning algorithm by an
oracle (which is the environment itself).
Two different exploration strategies are studied: a ran-
dom exploration, in which their is no guaranty to visit
all the blocks, or a scripted path, in which all the
blocks are knocked at least one time. In both cases,
the Adaptation Mechanism uses the data observed
during this step to construct and update its model.
In a second step, an Exploitation phase allows the Ex-
ploitation mechanism to use the built model to maxi-
mize the intensity of the volume. This does not pre-
vent the Adaptation Mechanism from continuing to
enrich itself by observing the environment. This sec-
ond phase is then similar to a reinforcement learning
approach.
Thus, the experiment is a combination of supervised
and reinforcement learning.
On the rest of this section, we present and discuss
some results we obtained. More precisely, we put
the focus on the evolution of the model built by
AMOEBA, and the evolution of the global

4.4.1 Evolution of the model built by AMOEBA

The figures 7 and 8 show two-dimensional visuali-
sations of the Context Agents paving on the dimen-
sions space at the end of the exploration and exploita-
tion phases for each experiment. This visualisation
is a graphical representation of the different Context
Agents and their associated utility level. Each rectan-
gle represents a Context Agent and the sub-space in
which this Context Agent is valid. Their colour de-
pends on the utility level which is associated to them.



Figure 7: 2D visualisation of the Context Agents paving
after a random exploration phase and after an exploitation
phase.

The white colour means that the utility level is zero.
The green shows a utility level superior to zero. The
more the green is intense, the more the utility level is
high. The grey areas without contours are areas that
the toy has not yet explored, so the model has not any
information about those areas, which explains the ab-
sence of Context Agent.
The upper figure 7 illustrates the model built by
AMOEBA after a random exploration of the environ-
ment. By comparing this projection with the location
of the obstacles in the arena, we observe that only the
top right corner is populated with green squares. This
implies that only the yellow block has been discov-
ered during the exploration phase.
On contrary, the upper figure 8, which shows the
model built at the end of a scripted exploration phase,
shows three distinct areas populated by green squares,
which corresponds to the blue and yellow blocks, and
the upper wall of the arena. Those two figures il-
lustrate how AMOEBA has populated its model with
Context Agents. This shows that the model built by
AMOEBA is dependant of the situation that it has ex-
perimented.
If we observe the evolution of the same model at the
end of the exploitation phases (lower parts of figure 8
and 7), we can see a significant evolution of the dis-
tribution of context agents in the areas of contact with
obstacles. In both cases, better details of the edges
of the obstacles are obtained. In the case of random
exploration, it is found that only one obstacle was ac-
tually used, but all of its edges were observed. Con-

Figure 8: 2D visualisation of the Context Agents paving
after a scripted exploration phase and after an exploitation
phase.

Figure 9: Comparison of the utility value between explo-
ration and exploitation phases.

versely, only a few edges of several obstacles were
exploited following the random exploration.

4.4.2 Evolution of Global Utility Value

In order to evaluate this SACL implementation, we
propose to compare the global utility level gener-
ated during the phase of exploration with the utility
level generated during the phase of exploitation. Each
exploration phase and exploitation phase lasts three



minutes for the two experiments, and the experiment
is computed ten time each.
The figure 9 shows the mean utility value obtained
in each phase for the two different exploration strate-
gies. The mean utility value during the random explo-
ration is 1.74 and grows to 3.16 during the exploita-
tion phase. During the scripted exploration phase, the
mean utility value goes from 3.67 to 3.61 during the
exploitation phase
In the case of random exploration, there is signifi-
cant progress in average utility during the exploitation
phase. Conversely, utility decreases (very slightly)
during the exploitation phase linked to scripted ex-
ploration. This can be explained by the fact that the
scenario is already relatively efficient. Nevertheless,
this remains an interesting result because the system
has learned to produce behavior that is almost as ef-
fective as an ad hoc scenario.

5 CONCLUSIONS AND
PERSPECTIVES

The evolution of technologies now enables to con-
sider that artificial systems will face more and more
complex and dynamic environments where they will
have to perform more and more various tasks. As the
variety of environments and tasks is increasing, these
systems needs to constantly adapt their behavior in
order to maintain the usefulness of their interactions
with their environment.
This requirement for constantly learning from the in-
teraction with the environment will be a key compo-
nent of Ambient Systems, notably because of their
socio-technological aspect. Indeed, the notion of task
in Ambient Systems is ambiguous and depends of its
users, which makes them interact with human users.
The incapacity to specify a priori all the interactions
that can occur in these systems, combined with the
high dynamics of those types of environment impeach
an ad hoc design. On contrary, those artificial systems
must constantly learn, through their own experiences,
to interact with their environment.
In this paper, we present our use of the SACL pat-
tern to design artificial systems with Lifelong Learn-
ing capacities. It proposes to design artificial sys-
tems in which a model is dynamically built by expe-
rience. This model is both exploited and enriched by
the mechanism that uses it to behave.
This experiment illustrates how a model can be both
built and exploited in real-time. The simulation we
performed also shows that our approach is suitable
for both supervised and reinforcement learning ap-
proaches.

The work introduced in this paper is currently being
deployed in the neOCampus initiative which intends
to transform the University of Toulouse into a smart
lab. This deployment will allow real use-cases appli-
cations and comparative analysis in order to evaluate
the benefits of our approach.
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